PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scrutinization of Joule heating and viscous dissipation on MHD flow and melting heat transfer over a stretching sheet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper deals with an analysis of the combined effect of Joule heating and viscous dissipation on an MHD boundary layer flow and melting heat transfer of a micro polar fluid over a stretching surface. Governing equations of the problem are transformed into a set of coupled nonlinear ordinary differential equations by applying proper transformations and then they are solved numerically using the RKF-45 method. The method is verified by a comparison with the established results with limiting solution. The influence of the various interesting parameters on the flow and heat transfer is analyzed in detail through plotted graphs.
Rocznik
Strony
429--443
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
autor
  • Department of Studies and Research in Mathematics Kuvempu University Shankaraghatta-577 451, Shimoga, Karnataka, INDIA
  • Department of Studies and Research in Mathematics Kuvempu University Shankaraghatta-577 451, Shimoga, Karnataka, INDIA
  • Department of Engineering Mathematics Faculty of Engineering, Christ University Mysore Road, Bengaluru-560074 INDIA
Bibliografia
  • [1] Roberts L. (1958): On the melting of a semi-infinite body of ice placed in a hot stream of air. – J. of Fluid Mechanics, vol.4, pp.505-528.
  • [2] Tien C. and Yen Y.C. (1965): The effect of melting on forced convection heat transfer. – J. Appl. Meteorol, vol.4, pp.523-527.
  • [3] Gorla R.S.R., Mansour M.A., Hussanien I.A. and Bakier A.Y. (1999): Mixed convection effect on melting from a vertical plate. Transport Porous Med., vol.36, pp.245-254.
  • [4] Ganesh Kumar K., Gireesha B.J., Rudraswamy N.G. and Gorla R.S.R. (2017): Melting heat transfer of hyperbolic tangent fluid over a stretching sheet with fluid particle suspension and thermal radiation. – Communications in Numerical Analysis, vol.2, pp.125-140.
  • [5] Hayat T., Anum Shafiq and Alsaedi A. (2016): Characteristics of magnetic field and melting heat transfer in stagnation point flow of Tangent-hyperbolic liquid. – Journal of Magnetism and Magnetic Materials, vol.405, pp.97-106.
  • [6] Ganesh Kumar K., Gireesha B.J., Prasannakumara B.C. and Ramesh G.K. (2017): Phenomenon of radiation and viscous dissipation on Casson nanoliquid flow past a moving melting surface. – Diffusion Foundations, vol.11, pp.33-42.
  • [7] Makinde O.D., Kumar K.G., Manjunatha S. and Gireesha B.J. (2017): Effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching surface. – Defect and Diffusion Forum, vol.378, pp.125-136.
  • [8] Eringen A.C. (1966): Theory of micropolar fluids. – J. Math. Mech., vol.16, pp.150-178.
  • [9] Heruska M.W., Watson L.T. and Sankara K.K. (1986): Micropolar flow past a porous stretching sheet. – Comput. Fluids, vol.14, pp.117-29.
  • [10] Hassanien I.A. and Gorla R.S.R. (1990): Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing. – Acta Mechanica, vol.84, pp.191-199.
  • [11] Nazar R., Amin N., Filip D. and Pop I. (2004): Stagnation point flow of a micropolar fluid towards a stretching sheet. – Int. J. of Non-Linear Mechanics, vol.39, No.7, pp.1227-1235.
  • [12] Khalid A., Ilyas Khan and Sharidan Shafie (2017): Free convection flow of micropolar fluids over an oscillating vertical plate. – Malaysian Journal of Fundamental and Applied Sciences, vol.13, No.4, pp.654-658.
  • [13] Kumar K.G., Rudraswamy N.G., Gireesha B.J. and Manjunatha S. (2017): Nonlinear thermal radiation effect on Williamson fluid with particle-liquid suspension past a stretching surface. – Results in Physics, vol.7, pp.3196-3202.
  • [14] Govardhan K., Nagaraj G., Kaladhar K. and Balasiddulu M. (2015): MHD and radiation effects on mixed convection unsteady flow of micropolar fluid over a stretching sheet. – Procedia Computer Science, vol.57, pp.65-76.
  • [15] Kumar K.G., Gireesha B.J., Manjunatha S. and Rudraswamy N.G. (2017): Effect of nonlinear thermal radiation on double-diffusive mixed convection boundary layer flow of viscoelastic nanofluid over a stretching sheet. – International Journal of Mechanical and Materials Engineering, vol.12, No.1, pp.18.
  • [16] Akbar N.S., Nadeem S., Haq R. and Khan Z.H. (2013): Numerical solutions of magneto hydrodynamic boundary layer flow of tangent hyperbolic fluid flow towards a stretching sheet with magnetic field. – Indian J. Phys., vol.87, No.11, pp.1121-1124.
  • [17] Kumar K.G., Gireesha B.J., Ramesh G.K. and Rudraswamy N.G. (2018): Double-diffusive free convective flow of Maxwell nanofluid past a stretching sheet with nonlinear thermal radiation. – Journal of Nanofluids, vol.7, No.3, pp.499-508.
  • [18] Saffman P.G. (1962): On the stability of laminar flow of a dusty gas. – J. of Fluid Mechanics, vol.13, pp.120-128.
  • [19] Datta N. and Mishra S.K. (1982): Boundary layer flow of a dusty fluid over a semi-infinite flat plate. – Acta Mech., vol.42, pp.71-83.
  • [20] Vajravelu K. and Nayfeh J. (1992): Hydromagnetic flow of a dusty fluid over a stretching sheet. – Int. J. of Nonlinear Mechanics, vol.27, pp.937-945.
  • [21] Gireesha B.J., Manjunatha S. and Bagewadi C.S. (2012): Unsteady hydromagnetics boundary layer flow and heat transfer of dusty fluid over a stretching sheet. – Afrika Matematika, vol.23, No.2, pp.229-241.
  • [22] Gireesha B.J., Chamkha A.J. and Manjunatha S. (2013): Boundary-layer flow and heat transfer of a dusty fluid flow over a stretching sheet with non-uniform heat source/sink and radiation. – Int. J. Numer. Methods Heat Fluid Flow, vol.23, No.4, pp.598-612.
  • [23] Manjunatha S. and Gireesha B.J. (2016): Effects of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid. – Ain Shams Engineering Journal, vol.7, No.1, pp.505-515.
  • [24] Kumar K.G., Gireesha B.J. and Gorla R.S.R. (2018): Flow and heat transfer of dusty hyperbolic tangent fluid over a stretching sheet in the presence of thermal radiation and magnetic field. – International Journal of Mechanical and Materials Engineering, vol.13, No.1, 2.
  • [25] Ramesh G.K., Kumar K.G., Shehzad S.A. and Gireesha B.J. (2018): Enhancement of radiation on hydromagnetic Casson fluid flow towards a stretched cylinder with suspension of liquid-particles. – Canadian Journal of Physics, vol.999, pp.1-7.
  • [26] Kumar K.G., Gireesha B.J., Rudraswamy N.G. and Manjunatha S. (2017): Radiative heat transfers of Carreau fluid flow over a stretching sheet with fluid particle suspension and temperature jump. – Results in Physics, vol.7, pp.3976-3983.
  • [27] Reddy M.G., Rani M.S., Kumar K.G. and Prasannakumara B.C. (2018): Cattaneo–Christov heat flux and nonuniform heat-source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge. – Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.40, No.20, 95.
  • [28] Fathizadeh M., Madani M., Khan Y., Faraz N., Yildirim A. and Tutkun S. (2013): An effective modification of the homotopy perturbation method for MHD viscous flow over a stretching sheet. – J. King Saud University, vol.25, No.2, pp.107-113.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cf6c23b-cf24-4a05-b2bd-e2845091e623
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.