PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plasticity properties of advanced high-strength steel weld construction of transport means - simulation by the MESH-free method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Advanced high-strength steel (AHSS) is being used increasingly often in the structure of means of transport. Welds made of these steels can crack in the heat-affected zone (HAZ) and have inferior mechanical properties compared to the base material. The goal of this paper was to solve the technological and material problem of obtaining highstrengh thin-walled welded structures of AHSS steel designed for heavily loaded elements of transport means. The novelty of the article is its presentation of a modified welding process which enables a high-strength structure of the obtained joint to be obtained without welding defects and incompatibilities. Copper backing was selected as an effective method of heat dissipation in the process, and, using the basic solutions method, the leverage of a heat flow process in the weld method deposit (WMD) was checked after cooling down the substrate. The fundamental solutions method was used to determine the optimal shape of the backing. It has been shown that the new backing affects the structure and mechanical properties of welds. In order to verify the newly developed method, tensile tests of the obtained joint were carried out, the hardness was assessed, the metallographic structure was analyzed, and non-destructive tests were performed. The developed material and technological solution were used, for example, for the construction of the arm element of the mobile platform.
Czasopismo
Rocznik
Strony
39--50
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • Silesian University of Technology; 8 Krasińskiego, 40-019 Katowice, Poland
  • Poznan University of Technology; 3 Piotrowo, 60-965 Poznan, Poland
  • Silesian University of Technology; 8 Krasińskiego, 40-019 Katowice, Poland
  • Silesian University of Technology; 8 Krasińskiego, 40-019 Katowice, Poland
Bibliografia
  • 1. Bleck, W. & Larour, P. & Baeumer, A. High Strain Tensile Testing of Modern Car Body Steels. Material Forum. 2005. Vol. 29. P. 21-28.
  • 2. Kowalewski, Z. & Szymczak, T. & Maciejewski, J. Material effects during monotonic-cyclic loading, Inter. J. Solids Struct. 2014. Vol. 51. P. 740-753. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2013.10.040.
  • 3. Szymczak, T. & Makowska, K. & Kowalewski, Z. Influence of the welding process on the mechanical characteristics and fracture of the S700MC high strength steel under various types of loading. Materials. 2020. Vol. 13. No. 5249. P. 1-17. DOI: https://doi.org/10.3390/ma13225249.
  • 4. Sanraj Diesel Truck Mounted Mobile Crane, Capacity: 20-25 ton, Platform Height: 80-100 feet. Available at: https://www.indiamart.com/proddetail/truck-mounted-mobile-crane-21359395330.html.
  • 5. Barsukov, V. & Tarasiuk, W. & Shapovalov, V. & Krupicz, B. & Barsukov, V.G. Express Evaluation Method of Internal Friction Parameters in Molding Material Briquettes. Journal of Friction and Wear. 2017. Vol. 38. No. 1. P. 71-76. DOI: https://doi.org/10.3103/S1068366617010032. Chatterjee, D. Behind the Development of Advanced High Strength Steel (AHSS) Including Stainless Steel for Automotive and Structural Applications - An Overview. Materials Science and Metallurgy Engineering. 2017. Vol. 4. No. 1. P. 1-15. Available at: http://pubs.sciepub.com/msme/4/1/1/index.html.
  • 6. Górka, J. & Ozgowicz, A. Robotic welding of high-strength DOCOL 1200M steel with Laser SEAM Stepper system. Weld. Tech. Rev. 2017. Vol. 89. No. 10. DOI: https://doi.org/10.26628/WTR.V89I10.812.
  • 7. Hadryś, D. Impact load of welds after micro-jet cooling. Archives of Metallurgy and Materials. 2015. Vol. 60. DOI: https://doi.org/10.1515/amm-2015-0409.
  • 8. Górka, J. Assessment of the weldability of T-welded joints in 10 mm Thick TMCP steel using laser beam. Materials. 2018. Vol. 11. No. 7. P. 1192-1202. DOI: https://doi.org/10.3390/ma11071192.
  • 9. Darabi, J. & Ekula, K. Development of a chip-integrated micro cooling device. Microelectronics Journal. 2003. Vol. 34. No. 11. P. 1067-1074. DOI: https://doi.org/10.1016/j.mejo.2003.09.010.
  • 10. Muszynski, T. & Mikielewicz, D. Structural optimization of microjet array cooling system. Applied Thermal Engineering. 2017. Vol. 123. P. 103-110. DOI: https://doi.org/10.1016/j.applthermaleng.2017.05.082.
  • 11. Celin, R. & Burja, J. Effect of cooling rates on the weld heat affected zone coarse grain microstructure. Metallurgical and Materials Engineering. 2018. Vol. 24. No. 1. P. 37-44. DOI: https://doi.org/10.30544/342.
  • 12. Tarasiuk, W. & Szymczak, T. & Borawski, A. Investigation of surface after erosion using optical profilometry technique, Metrology and Measurement Systems. 2020. Vol. 27. No. 2. P. 265-273. DOI: https://doi.org/10.24425/mms.2020.132773.
  • 13. Hashimoto, F. & Lahoti, G.D. Optimization of Set-up Conditions for Stability of The Centerless Grinding Process. CIRP Annals - Manufacturing Technology. 2004. Vol. 53. No. 1. P. 271-274. DOI: https://doi.org/10.1016/S0007-8506(07)60696-9.
  • 14. Bradley, J.R. & Aaronson, H.I. Growth kinetics of grain boundary ferrite allotriomorphs in Fe-CX alloys. Metallurgical Transactions A. 1981. Vol. 12. P. 1729-1741.
  • 15. Jurek, A. Increasing the operating range of the mobile platform for motor vehicles while maintaining the curb weight. PhD theses. 2022. Silesian University of Technology [In Polish: Zwiększenie zasięgu operacyjnego podestu ruchomego pojazdów samochodowych przy zachowaniu masy własnej pojazdu].
  • 16. Demeri, M.Y. Advanced High-Strength Steels. Science, Technology, and Applications. ASM Technical Books. OH: ASM International. 2013. DOI: https://doi.org/10.31399/asm.tb.ahsssta.9781627082792.
  • 17. Earmi, M. & Anok, M. & Roosimolder, L. Weith reduction of support structures. In: DS 49: Proceedings of Nord-Design 2004 Conference. Tampere, Finland, 2004. P 309-324.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cf5ce2a-7488-4a48-b571-61bad5892385
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.