Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Coupled numerical simulation and multi-objective optimization for ultra-low nitrogen burners of ethylene cracking furnaces using a fast response surrogate model for combustion are proposed. Firstly, based on simplified reaction mechanisms involving 29 species and 164 reactions, a computational fluid dynamics (CFD)-coupled model for turbulent combustion is established. Secondly, a multi-objective optimization scheme based on a strong generalization-based surrogate model is developed for ultra-low nitrogen burners of ethylene cracking furnaces. The results show that a set of optimal operating parameters for the cracking furnace, i.e., the excess air coefficient of 1.07, the fuel gas flow rate of 0.192 kg/s, and the air preheating temperature of 380 K, is obtained. The optimal NOx emission con-centration decreased from 75.38 mg/m3 of the original scheme to 71.2 mg/m3, i.e., a decrease of 5.55%. The thermal efficiency of the firebox increased from 43.82% of the original scheme to 44.49%, i.e., an increase of 1.53%, which provides theoretical guidance for energy conservation and emission reduction of cracking furnaces.
Czasopismo
Rocznik
Tom
Strony
37--63
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Key Laboratory of Smart Manufacturing in Energy Chemical Process of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Center of Process System Engineering, Ministry of Education, East China Uni-versity of Science and Technology, Shanghai 200237, China.
autor
- CIBFINTECH, No. 2977 Chuansha Road, Pudong New Area, Shanghai 200131, China
autor
- Key Laboratory of Smart Manufacturing in Energy Chemical Process of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
Bibliografia
- [1] WANG D.F., LIU Q., HAN P., ZHAO W.J., Combustion optimization in power station based on big data-driven case-matching, Chin. J. Sci. Instrum., 2016, 37 (2), 420–428. DOI: 10.19650/j.cnki.cjsi.2016.02.024.
- [2] SCHLUCKNER C., GABER C., LANDFAHRER M., DEMUTH M., HOCHENAUER C., Fast and accurate CFD model for NOx emission prediction during oxy-fuel combustion of natural gas using detailed chemical kinetics, Fuel, 2020, 264, 116841. DOI: 10.1016/j.fuel.2019.116841.
- [3] NIE Z.B., Application and effect analysis of CFD numerical simulation technology in the transformation of low nitrogen burner in cracking furnace, Henan Chem. Ind., 2018, 35 (05), 41–44. DOI: 10.14173/j.cnki.hnhg.2018.05.011.
- [4] SHANOCK L.R., BARAN B.E., GENTRY W.A., PATTISON S.C., HEGGESTAD E.D., Polynomial regression with response surface analysis. A powerful approach for examining moderation and overcoming limitations of difference scores, J. Bus. Psychol., 2010, 25 (4), 543–554. DOI: 10.1007/s10869-010-9183-4.
- [5] OLIVER M.A., WEBSTER R., Kriging. A method of interpolation for geographical information systems, Int. J. Geogr. Inf. Syst., 1990, 4 (3), 313–332.
- [6] SMOLA A.J., SCHÖLKOPF B., A tutorial on support vector regression, Stat. Comput., 2004, 14, 199–222. DOI: 10.1023/B:STCO.0000035301.49549.88.
- [7] CUI K., JING X., Research on prediction model of geotechnical parameters based on BP neural network, Neural Comput. Appl., 2019, 31, 8205–8215. DOI: 10.1007/s00521-018-3902-6.
- [8] KARAYIANNIS N.B., MI G.W., Growing radial basis neural networks. Merging supervised and unsupervised learning with network growth techniques, IEEE T. Neural Net., 1997, 8 (6), 1492–1506. DOI: 10.1109/72.641471
- [9] GU J., WANG Z., KUEN J., MA L., SHAHROUDY A., SHUAI B., LIU T., WANG X., WANG G., CAI J., CHEN T., Recent advances in convolutional neural networks, Pattern Recogn., 2018, 77, 354–377. DOI: 10.1016 /j.patcog.2017.10.013.
- [10] BROWN D.G., RIOLO R., ROBINSON D.T., NORTH M., RAND W., Spatial process and data models. Toward integration of agent-based models and GIS, J. Geogr. Syst., 2005, 7 (1), 25–47. DOI: 10.1007/s10109 -005-0148-5.
- [11] ABOABA A., MARTINEZ Y., MOHAGHEGH S., SHAHNAM M., GUENTHER C., LIU Y., Smart proxy modeling application of artificial intelligence and machine learning in computational fluid dynamics, National Energy Technology Laboratory (NETL), Pittsburgh, PA, 2020.
- [12] YAO Q., ZHANG Y., WANG X., TIAN Z., HU G., DU W., Investigation of NOx emission under different burner structures with the optimized combustion model, Neurocomp., 2022, 482, 224–235. DOI: 10.1016/j.neucom.2021.11.051.
- [13] YUAN B., MA J.G., CHEN D., Modification and operation adjustment of low nitrogen oxide burner in cracking furnace, Ethyl. Ind., 2018, 30 (2), 35–38.
- [14] MARLER R.T., ARORA J.S., Survey of multi-objective optimization methods for engineering, Struct. Multidisc. O., 2004, 26, 369–395. DOI: 10.1007/s00158-003-0368-6.
- [15] GOEL H.D., GRIEVINK J., HERDER P.M., WEIJNEN M.P.C., Integrating reliability optimization into chemical process synthesis, Reliab. Eng. Syst. Safe., 2002, 78 (3), 247–258. DOI: 10.1016/S0951-8320 (02)00167-9.
- [16] MENZEL G., OCH S.H., MARIANI V.C., MOURA L.M., DOMINGUES E., Multi-objective optimization of the volumetric and thermal efficiencies applied to a multi-cylinder internal combustion engine, Energ. Convers. Manage., 2020, 216, 112930. DOI: 10.1016/j.enconman.2020.112930.
- [17] SENER R., GÜL M.Z., Optimization of the combustion chamber geometry and injection parameters on a light-duty diesel engine for emission minimization using multi-objective genetic algorithm, Fuel, 2021, 304, 121379. DOI: 10.1016/j.fuel.2021.121379.
- [18] SMITH G.P., GOLDEN D.M., FRENKLACH M., MORIARTY N.W., EITENEER B., GOLDENBERG M., BOWMAN C.T., HANSON R.K., SONG S., GARDINER W.C., LISSIANSKI V.V., QIN Z., GRI-Mech, version 3.0, http://www.me.berkeley.edu/gri_mech/.2002.
- [19] Ansys, Inc., ANSYS Fluent Theory Guide 19.1, Canonsburg, PA, 2018.
- [20] HU G.H., WANG H.G., QIAN F., Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces, Chem. Eng. Sci., 2011, 66 (8),1600–1611. DOI: 10.1016/j.ces.2010.12.028.
- [21] FRASSOLDATI A., SHARMA P., CUOCI A., FARAVELLI T., RANGI E., Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow, Appl. Therm. Eng., 2010, 30 (4), 376–383. DOI: 10.1016/ j.applthermaleng.2009.10.001.
- [22] ZELDOVICH J., The oxidation of nitrogen in combustion and explosions, Acta Phys., 1946, 21 (4), 577–628.
- [23] HABIBI A., MERCI B., HEYNDERICKX G.J., Multiscale modeling of turbulent combustion and NOx emission in steam crackers, AIChE J., 2007, 53, 2384–2398. DOI: 10.1002/aic.11243.
- [24] DENISON M.K., WEBB B.W., Spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers, J. Heat Trans-T. ASME, 1993, 115 (4), 1004–1012.
- [25] KEE R.J., RUPLEY F.M., MILLER J.A., COLTRIN M.E., GRCAR J.F., MEEKS E., MOFFAT H.K., LUTZ A.E., DIXON-LEWIS G., SMOOKE M.D., WARNATZ J., EVANS G.H., LARSON R.S., MITCHELL R.E., PETZOLD L.R., REYNOLDS W.C., CARACOTSIOS M., STEWART W.E., GLARBORG P., WANG C., ADIGUN O., HOUF W.G., CHOU C.P., MILLER S.F., HO P., YOUNG D.J., CHEMKIN Release 4.0, Reaction Design, Inc., San Diego, CA, 2004.
- [26] SAINI R., PRAKASH S., DE A., YADAV R., Investigation of NOx in piloted stabilized methane-air diffusion flames using finite-rate and infinitely-fast chemistry based combustion models, Therm. Sci. Eng. Prog., 2018, 5, 144–157. DOI: 10.1016/ j.tsep.2017.11.008.
- [27] LAN X.Y., GAO J.S., XU C.M., ZHANG H.M., Numerical simulation of transfer and reaction processes in ethylene furnaces, Chem. Eng. Res. Des., 2007, 85 (A12),1565–1579. DOI: 10.1205/cherd07008.
- [28] XU Q., CHEN B.Z., HE X.R., ZHANG L., Simulation for naphtha pyrolysis in clear radiation tube of SRT-IV cracking furnace, Comp. Appl. Chem., 2001, 18 (3), 223–228. DOI: 10.16866/j.com.app.chem2001.03.007.
- [29] ZHANG J., LI J.K., NOx suppression technology for cracking furnace, Ethylene Ind., 2013, 25 (4), 40–43.
- [30] ZHANG K., The analysis and optimization of Daqing ethylene cracking furnace thermal efficiency, Jiangxi Chem. Ind., 2015, 2 (2), 17–20.
- [31] WANG P., More fuel gas boiler combustion adjustment and operation optimization, Changsha University of Science and Technology, Changsha 2015.
- [32] ZHANG Z.C., GAO T.Y., ZHANG L., TUO S.F., Aeroheating agent model based on radial basis function neural network, Acta Aeronaut. Astronaut. Sin., 2021, 42 (2), 524167. DOI: 10.7527/S10000-6893.2020.24167.
- [33] CHEN T.L., Application of support vector regression in thickness prediction of tectonic coal, China University of Mining and Technology, Xuzhou 2021.
- [34] HE X., Development and application of Sinopec CBL large capacity cracking furnace, Ethylene Ind., 2015, 27 (1), 49–52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cf45a35-95d6-471a-b762-51488f300675
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.