PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of weak inclusions on the cracking behavior of a jointed rock mass containing an opening: insights from DIC-based approaches

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To gain deep insights into the reinforcement effect of weak inclusions on jointed rock masses containing an opening, natural sandstone specimens containing multiple non-persistent joints and an opening were prepared, and two different cases, unfilled and filled openings, were considered. Digital image correlation (DIC) was applied to characterize the deformation fields of specimens during loading. Two measures extended from the DIC, the displacement vector and multivariate measure of strain dispersion, were proposed to identify and quantitatively analyze the cracking mechanism. Weak inclusions were found to improve the mechanical properties. The displacement vector fields around the newly formed cracks were calculated, and then, four types of cracks were recognized: direct tensile cracks, relative tensile cracks, shear cracks, and mixed cracks. Based on the fracture nature of cracks, nine types of crack coalescence among joints and six categories between openings and joints were summarized. The influence of weak inclusions on the cracking behavior of jointed sandstones was further clarified. Many more cracks were detected in the specimens containing a filled opening, which was validated by the fractal dimensions of the ultimate fracture surfaces. The differentiation rate of the effective variance (DREV) was defined to describe the dispersion of full-field strain data. The DREV was extremely close to 0 at the initial compacting and elastic deformation stage and then exhibited anomalous responses to cracking events. The first peak in the DREV–strain curve represents crack initiation, which can be regarded as a precursor.
Rocznik
Strony
art. no. e184, 2022
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Civil and Architectural Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
autor
  • Faculty of Civil and Architectural Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
autor
  • Kunming Prospecting Design Institute of China Nonferrous Metals Industry Co., Ltd, Kunming 650051, Yunnan, China
autor
  • Department of Civil Engineering, Yunnan University, Kunming 650500, Yunnan, China
Bibliografia
  • [1] Shang J, West LJ, Hencher SR, Zhao Z. Geological discontinuity persistence: implications and quantification. Eng Geol. 2018;241:41–54. https://doi.org/10.1016/j.enggeo.2018.05.010.
  • [2] Einstein HH, Veneziano D, Baecher GB, O’Reilly KJ. The effect of discontinuity persistence an rock slope stability. Int J Rock Mech Min Sci. 1983;20(5):227–36. https://doi.org/10.1016/0148-9062(83)90003-7.
  • [3] Bobet A, Einstein HH. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci. 1998;35(7):863–88. https://doi.org/10.1016/S0148-9062(98)00005-9.
  • [4] Pan PZ, Miao S, Wu Z, Feng XT, Shao C. Laboratory observation of spalling process induced by tangential stress concentration in hard rock tunnel. Int J Geomech. 2020;20(3):04020011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001620.
  • [5] Wong RHC, Chau KT. Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci. 1998;35(2):147–64. https://doi.org/10.1016/S0148-9062(97)00303-3.
  • [6] Wong LNY, Einstein HH. Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and inter-pretation. Rock Mech Rock Eng. 2009;42(3):475–511. https://doi.org/10.1007/s00603-008-0002-4.
  • [7] Prudencio M, Jan MVS. Strength and failure modes of rock mass models with non-persistent joints. Int J Rock Mech Min Sci.2007;44(6):890–902. https://doi.org/10.1016/j.ijrmms.2007.01.005.
  • [8] Huang CC, Yang WD, Duan K, Fang LD, Wang L, Bo CJ. Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression. Constr Build Mater. 2019;220:426–43. https://doi.org/10.1016/j.conbu ildmat.2019.05.159.
  • [9] Cao RH, Cao P, Lin H, Pu CZ, Ou K. Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach. Rock Mech Rock Eng. 2016;49(3):763–83. https:// doi. org/ 10.1007/s00603-015-0779-x.
  • [10] Yang XX, Jing HW, Tang CA, Yang SQ. Effect of parallel joint interaction on mechanical behavior of jointed rock mass models. Int J Rock Mech Min Sci. 2017;92:40–53. https://doi.org/10.1016/j.ijrmms.2016.12.010.
  • [11] Sagong M, Bobet A. Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci. 2002;39(2):229–41. https://doi.org/10.1016/S1365-1609(02)00027-8.
  • [12] Wong RHC, Lin P, Tang CA. Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression. Mech Mater. 2006;38:142–59. https://doi.org/10.1016/j.mechmat.2005.05.017.
  • [13] Zeng W, Yang SQ, Tian WL. Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression. Eng Fract Mech. 2018;200:430–50. https://doi.org/10.1016/j.engfracmech.2018.08.016.
  • [14] Wu H, Zhao GY, Liang WZ. Investigation of cracking behavior and mechanism of sandstone specimens with a hole under compression. Int J Mech Sci. 2019;163: 105084. https://doi.org/10.1016/j.ijmecsci.2019.105084.
  • [15] Lin P, Wong RHC, Tang CA. Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes. Int J Rock Mech Min Sci. 2015;77:313–27. https://doi.org/10.1016/j.ijrmms.2015.04.017.
  • [16] Sagong M, Park D, Yoo J, Lee JS. Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression. Int J Rock Mech Min Sci. 2011;48(7):1055–67. https://doi.org/10.1016/j.ijrmms.2011.09.001.
  • [17] Cao RH, Cao P, Lin H, Pu CZ, Ou K. Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: experimental studies and particle mechanics approach. Arch Civ Mech Eng. 2018;18:198–214. https://doi.org/10.1016/j.acme.2017.06.010.
  • [18] Yang SQ, Yin PF, Zhang YC, Chen M, Zhou XP, Jing HW, Zhang QY. Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole. Int J Rock Mech Min Sci. 2019;114:101–21. https://doi.org/10.1016/j.ijrmms.2018.12.017.
  • [19] Salimian MH, Baghbanan A, Hashemolhosseini H, Dehghanipoodeh M, Norouzi S. Effect of grouting on shear behavior of rock joint. Int J Rock Mech Min Sci. 2017;98:159–66. https://doi.org/10.1016/j.ijrmms.2017.07.002.
  • [20] El Tani M. Grouting rock fractures with cement grout. Rock Mech Rock Eng. 2012;45:547–61. https:// doi. org/ 10. 1007/s00603-012-0235-0.
  • [21] Miao ST, Pan PZ, Wu ZH, Li SJ, Zhao SK. Fracture analysis of sandstone with a single filled flaw under uniaxial compression. Eng Fract Mech. 2018;204:319–43. https:// doi. org/ 10. 1016/j.engfracmech.2018.10.009.
  • [22] Sharafisafa M, Shen L, Zheng Y, Xiao J. The effect of flaw filling material on the compressive behaviour of 3D printed rock-like discs. Int J Rock Mech Min Sci. 2019;117:105–17. https://doi.org/10.1016/j.ijrmms.2019.03.031.
  • [23] Zhou XP, Niu Y, Cheng H, Berto F. Cracking behaviors and chaotic characteristics of sandstone with unfilled and filled dentate flaw. Theor Appl Fract Mech. 2021;112: 102876. https:// doi.org/10.1016/j.tafmec.2020.102876.
  • [24] Janeiro RP, Einstein HH. Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression). Int J Fracture. 2010;164(1):83–102. https://doi.org/10.1007/s10704-010-9457-x.
  • [25] Du MR, Jing HW, Su HJ, Zhu TT, Chen ML. Strength and failure characteristics of sandstone containing two circular holes filled with two types of inclusions under uniaxial compression. J Cent South Univ. 2017;24(011):2487–95. https://doi.org/10.1007/s11771-017-3661-z.
  • [26] Zhu QQ, Li DY, Han ZY, Li XB, Zhou ZL. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression. Int J Rock Mech Min Sci. 2019;115:33–47. https:// doi. org/ 10. 1016/j.ijrmms.2019.01.010.
  • [27] Stirling RA, Simpson DJ, Davie CT. The application of digital image correlation to Brazilian testing of sandstone. Int J Rock Mech Min Sci. 2013;60:1–11. https://doi.org/10.1016/j.ijrmms.2012.12.026.
  • [28] Li DY, Huang PY, Chen ZB, Yao GW, Guo XY, Zheng XH, Yang Y. Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology. Eng Fract Mech. 2020;235: 107166. https://doi.org/10.1016/j.engfracmech.2020.107166.
  • [29] Liu B, Gao YT, Jin AB, Elmo D. Fracture characteristics of orebody rock with varied grade under dynamic brazilian tests. Rock Mech Rock Eng. 2020;53:2381–98. https://doi.org/10.1007/s00603-020-02048-9.
  • [30] Zhang K, Li N, Liu WL, Xie JB. Experimental study of the mechanical, energy conversion and frictional heating characteristics of locking sections. Eng Fract Mech. 2020;228: 106905. https://doi.org/10.1016/j.engfracmech.2020.106905.
  • [31] Belem T, Benzaazoua M. Design and application of underground mine paste backfill technology. Geotech Geol Eng. 2008;26:147–74. https://doi.org/10.1007/s10706-007-9154-3.
  • [32] ISRM. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Cham: Springer; 2015. https://doi.org/10.1007/978-3-319-07713-0.
  • [33] Blaber J, Adair B, Antoniou A. Ncorr: open-source 2D digital image correlation matlab software. Exp Mech. 2015;55:1105–22. https://doi.org/10.1007/s11340-015-0009-1.
  • [34] Miao ST, Pan PZ, Zhao SK, Han J, Konicek P. A new DIC-based method to identify the crack mechanism and applications in fracture analysis of red sandstone containing a single flaw. Rock Mech Rock Eng. 2021;45(8):3847–71. https://doi.org/10.1007/s00603-021-02472-5.
  • [35] Pan B. Recent progress in digital image correlation. Exp Mech. 2011;51:1223–35. https://doi.org/10.1007/s11340-010-9418-3.
  • [36] Sharafisafa M, Shen L, Xu QF. Characterisation of mechanical behaviour of 3D printed rock-like material with digital image correlation. Int J Rock Mech Min Sci. 2018;112:122–38. https://doi.org/10.1016/j.ijrmms.2018.10.012.
  • [37] Liu LW, Li HB, Li XF, Wu RJ. Full-field strain evolution and characteristic stress levels of rocks containing a single preexisting flaw under uniaxial compression. B Eng Geol Environ. 2020;79:3145–61. https://doi.org/10.1007/s10064-020-01764-4.
  • [38] Liu XH, Zhang K, Li N, Qi FF, Ye JM. Quantitative identification of failure behavior of 3D printing rock-like specimen containing an opening and two flaws. Rock Soil Mech. 2021;42(11):3017–28. https://doi.org/10.16285/j.rsm.2021.0521.
  • [39] Zhang XP, Wong LNY. Displacement field analysis for cracking processes in bonded-particle model. Bull Eng Geol Environ. 2014;73(1):13–21. https://doi.org/10.1007/s10064-013-0496-1.
  • [40] Wong LNY, Li HQ. Numerical study on coalescence of two preexisting coplanar flaws in rock. Int J Solids Struct. 2013;50(22–23):3685–706. https://doi.org/10.1016/j.ijsolstr.2013.07.010.
  • [41] Yin P, Wong RHC, Chau KT. Coalescence of two parallel preexisting surface cracks in granite. Int J Rock Mech Min Sci. 2014;68:66–84. https://doi.org/10.1016/j.ijrmms.2014.02.011.
  • [42] Tang CA, Kaiser PK. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure-Part I: fundamentals. Int J Rock Mech Min Sci. 1998;35(2):113–21. https://doi.org/10.1016/S0148-9062(97)00009-0.
  • [43] Gao K, Harrison JP. Scalar-valued measures of stress dispersion. Int J Rock Mech Min Sci. 2018;106:234–42. https://doi.org/10.1016/j.ijrmms.2018.04.008.
  • [44] Zhang K, Qi FF, Bao R, Xie JB. Physical reconstruction and mechanical behavior of fractured rock masses. B Eng Geol Environ. 2021;80:4441–57. https:// doi. org/ 10. 1007/s10064-021-02206-5.
  • [45] Zhang K, Liu XH, Liu WL, Zhang S. Influence of weak inclusions on the fracturing and fractal behavior of a jointed rock mass containing an opening: experimental and numerical studies. Comput Geotech. 2021;132: 104011. https://doi.org/10.1016/j.compgeo.2021.104011.
  • [46] Zhang K, Chen YL, Fan WC, Liu XH, Xie JB. Influence of intermittent artificial crack density on shear fracturing and fractal behavior of rock bridges: experimental and numerical studies. Rock Mech Rock Eng. 2020;53(2):553–68. https:// doi. org/ 10.1007/s00603-019-01928-z.
  • [47] Brady BHG, Brown ET. Rock mechanics: for underground mining. 3rd ed. Dordrecht: Springer; 2006.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cf399a3-c435-4772-b672-2776d2184471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.