PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the influence of substitute fuels on properties operating conditions of military hybrid drive systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Despite the undoubted advantages of electric drives, the mass and volume energy density of chemical batteries makes it difficult to rely solely on cheap and green electricity in many applications such as airplanes, long-distance trains, ocean-going vessels and heavy equipment. The answer combining the advantages of EV and ICE are hybrid drives. Hybrid electric drives have also found their use in military applications thanks to, among others, the quiet operation of the system in EV mode, which may be a key advantage in some combat applications, e.g. urban areas. The range of a small hybrid vehicle extended by the use of ICE increases its operational capabilities. Hybrid systems can also use alternative hydrocarbon fuels. The aim of the work was to determine the impact of alternative fuels, potentially the most available on the modern battlefield, on the performance of the hybrid drive system of a wheeled military platform intended for operation in urban areas. The experiment showed that alternative fuels such as F-34 and Jet A-1 are compatible, but may result in increased fuel consumption, reduced energy efficiency and negative environmental impact due to higher exhaust emissions.
Czasopismo
Rocznik
Strony
22--31
Opis fizyczny
Bibliogr. 23 poz., il. kolor., fot., 1 rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Military University of Technology in Warsaw, Poland
Bibliografia
  • [1] AVL CEB II - 2000 analyzer user manual.
  • [2] AVL. 439 Opacimeter product description. https://www.avl.com/documents/10138/885965/Download_01_AVL_439_Opacimeter_Product+Description.pdf (accessed on 27 April 2023).
  • [3] AVL. Product description: fuel balance. https://www.avl.com/documents/10138/2699442/Product+Description+Fuel+Balance (accessed on 22 April 2023).
  • [4] Barta D, Mruzek M, Kendra M, Kordos P, Krzywonos L. Using of non-conventional fuels in hybrid vehicle drives. Adv Sci Technol Res J. 2016;10:240-247. https://doi.org/10.12913/22998624/65108
  • [5] Elektroinstalator.com.pl. Jakość energii elektrycznej według normy PN-EN 50160. http://www.elektroinstalator.com.pl/index.php/artykuly/metrologia/2478-jakosc-energii-elektrycznej-wedlug-normy-pn-en-50160 (accessed on 24 April 2023).
  • [6] Heywood JB. Internal combustion engine fundamentals (2nd ed). McGraw-Hill Education 2018.
  • [7] Fuel data sheets obtained from the dealer - Regulation (EU) 2020/878 amending Annex II to the REACH Regulation.
  • [8] ISO 9001 - Quality management. https://www.iso.org/iso-9001-quality-management.html (accessed on 24 April 2023).
  • [9] Karczewski M, Szczęch L, Trawiński G. Motor vehicle engines (in Polish: Silniki pojazdów samochodowych). WSiP. Warsaw 2022.
  • [10] Kovbasenko S. Possibilities of enhancing the environmental safety of diesel vehicles using alternative fuels. J Mech Eng Transport. 2023;16:51-57. https://doi.org/10.31649/2413-4503-2022-16-2-51-57
  • [11] Khandelwal B. Aviation fuels (1st ed). Academic Press 2021.
  • [12] Legutko S. Machine operation (in Polish: Eksploatacja maszyn). Poznan University of Technology Publishing House. Poznań 2007.
  • [13] McDonnell K. Combat and tactical vehicles: developments and considerations for the department of defense. Military and Veteran Issues, 2nd ed. Nova Science Publishers, Inc. 2020.
  • [14] Merkisz J, Pielecha J. Alternative fuels and vehicle propulsion systems (in Polish: Alternatywne paliwa i układy napędowe pojazdów). Poznan University of Technology Publishing House. Poznań 2014.
  • [15] Merkisz J, Pielecha J. Electrical systems of hybrid vehicles (in Polish: Układy elektryczne pojazdów hybrydowych). Poznan University of Technology Publishing House. Poznań 2015.
  • [16] Nasoulis C, Protopapadakis G, Ntouvelos E, Gkoutzamanis V, Kalfas A. Environmental and techno-economic evaluation for hybrid-electric propulsion architectures. The Aeronautical Journal. 2023;127(1317):1904-1926. https://doi.org/10.1017/aer.2023.27
  • [17] National Radio Institute. Mathematics for Electronics and Electricity. 2017. USA.
  • [18] NATO. Logistic support agreement. https://www.nato.int/docu/logien/1997/lo-15a.htm (accessed on 24 April 2023).
  • [19] Schobert HH. The chemistry of hydrocarbon fuels (2nd ed.). Butterworth-Heinemann 2015.
  • [20] Shariz M, Gautam A, Tomar B, Gautam M, Jalil M. To Design an Optimal PV/diesel/battery hybrid energy system for Havelock Island in India. In: Rani A, Kumar B, Shrivastava V, Bansal RC (eds). Signals, machines and automation. International Conference on Signals, Machines, and Automation, Part of the Lecture Notes in Electrical Engineering book series (LNEE, 1023); 2023. https://doi.org/10.1007/978-981-99-0969-8_21
  • [21] Tanwar M, Tanwar P, Bhand Y, Bhand S, Jadhav K, Bhand S. Biofuels: production and properties as substitute fuels. In-techOpen 2023. https://doi.org/10.5772/intechopen.109073
  • [22] Yanmar. Silniki chłodzone powietrzem. https://yanmar.pl/silniki-yanmar/silniki-chlodzone-powietrzem/dsh$sajn2 (accessed on 24 April 2023).
  • [23] Zou Y, Li J, Hu X, Chamaillard Y. Modeling and control of hybrid propulsion system for ground vehicles. Springer Berlin, Heidelberg 2018. https://doi.org/10.1007/978-3-662-53673-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cefe845-72c2-4233-a660-d48485efed58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.