PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxidative stress enzymes in tobacco during a long-term exposure to ambient ozone at two different sites

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kumulatywny wpływ ozonu na aktywność enzymów antyoksydacyjnych u tytoniu rosnącego na dwóch stanowiskach ekspozycyjnych
Języki publikacji
EN
Abstrakty
EN
Tropospheric ozone is a harmful air pollutant which may cause oxidative stress in plant cells, leading to biochemical and physiological changes and yield reduction. The aim of the study was to examine the cumulative effect of long-term ozone stress on the activity of antioxidative enzymes in leaves of ozone sensitive and resistant tobacco cultivar growing at the sites of various ozone concentrations. The one-month experiment was conducted in the 2009, 2010 and 2011 growing seasons with different meteorological conditions and ozone concentrations. The activity of SOD, APX and GuPX was measured four times at weekly intervals. The highest tropospheric ozone concentration was recorded in 2010 along with high level of solar radiation and temperature. The enhanced ozone level caused the increase in the activity of all examined enzymes. However, at more elevated ozone level the activity of all enzymes was higher in sensitive (Bel W3) than resistant (Bel B) tobacco cultivar. On the other hand, at lower ozone level the activity of examined enzymes was rather similar in both cultivars or even higher in ozone-resistant one, which was especially valid for SOD. A positive correlation between the activity of all enzymes and ozone concentration was shown in both cultivars. The presented results show that meteorological conditions modify tropospheric ozone concentration and real plant response to this environmental pollutant. It is highly important to interpret week-by-week plant response and environmental conditions bearing in mind the cumulative ozone effect resulting from previous weeks conditions.
PL
Zwiększone stężenie ozon troposferycznego w powietrzu jest szkodliwe dla roślin, gdyż przyczynia się do powstania stresu oksydacyjnego prowadzącego do zmian biochemiczno-fizjologicznych oraz redukcji plonów. Celem pracy było zbadanie wpływu długotrwałego stresu ozonowego na aktywność enzymów antyoksydacyjnych w liściach wrażliwej oraz odpornej na ozon odmiany tytoniu rosnących na stanowiskach ekspozycyjnych różniących się stężeniem tego zanieczyszczenia. Przeprowadzono trzy trwające jeden miesiąc doświadczenia w latach 2009, 2010 i 2011 charakteryzujących się różnymi warunkami meteorologicznymi oraz różnym stężeniem ozonu. Aktywność SOD, APX oraz GuPX oznaczano czterokrotnie (w odstępach tygodniowych) w czasie ekspozycji roślin. Najwyższe stężenie ozonu stwierdzono w roku 2010, kiedy odnotowano również wysoki poziom promieniowania słonecznego oraz temperatury powietrza. Zwiększone stężenie ozonu przyczyniło się do wzrostu aktywności badanych enzymów. Większą aktywność enzymów w warunkach podwyższonego stężenia ozonu stwierdzono u wrażliwej (Bel W3) niż odpornej (Bel B) odmiany tytoniu. Przy niższym stężeniu ozonu, aktywność badanych enzymów była zbliżona u obu odmian, lub nawet wyższa u odmiany odpornej, co było szczególnie widoczne w przypadku SOD. U obu odmian stwierdzono pozytywną korelacje pomiędzy aktywnością badanych enzymów oraz stężeniem ozonu. Uzyskane wyniki wskazują, że warunki atmosferyczne wpływają na stężenie ozonu troposferycznego, co z kolei wpływa na rzeczywistą odpowiedź rośliny na to gazowe zanieczyszczenie powietrza. Niezwykle ważne jest, aby uzyskane dane dotyczące odpowiedzi roślin na zanieczyszczenie powietrza ozonem interpretować z uwzględnieniem czasowych zależności, w szczególności efektu kumulowania się wpływu ozonu w poprzedzającym przedziale czasowym.
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 40 poz., wykr.
Twórcy
autor
  • Poznan University of Life Sciences, Poland, Department of Plant Physiology
autor
  • Poznan University of Life Sciences, Poland, Department of Plant Physiology
  • Poznan University of Life Sciences, Poland, Department of Plant Physiology
Bibliografia
  • 1. Baier, M., Kandlbinder, A., Golldack, D. & Dietz, K.-J. (2005). Oxidative stress and ozone: perception, signalling and response, Plant Cell and Environment, 28, pp. 1012-1020.
  • 2. Bandurska, H., Borowiak, K. & Miara, M. (2009). Effect of two different ambient ozone concentrations on antioxidative enzymes in leaves of two tobacco cultivars with contrasting ozone sensitivity, Acta Biologica Cracoviesia, Series Botanica, 51, pp. 37-44.
  • 3. Beauchamp, Ch. & Fridovich, J. (1971). Superoxide dismutase: improved assays and assay applicable to acrylamide gels, Analytical Biochemistry, 44, pp. 276-287.
  • 4. Biswas, D.K., Xu, H., Li, Y.G., Sun, J.Z., Wang, X.Z. & Han, X.G. (2008). Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years, Global Change Biology, 14, pp. 46-59.
  • 5. Borowiak, K., Drzewiecka, K., Gąsecka, M., Zbierska, J. & Grajczyńska, O. (2010). Investigations of selected parameters of tobacco plants response to tropospheric ozone in ambient air conditions, Fresenius Environmental Bulletin, 19, pp. 2480-2489.
  • 6. Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72, pp. 248-254.
  • 7. Budka, A., Kayzer, D., Borowiak, K., Zbierska, J., Wolna-Maruwka, A., Schroeter-Zakrzewska, A. & Chlebowska, A. (2014). Visible tobacco leaf injury indices as indicators of cumulative tropospheric ozone effect, Archives of Environmental Protection, 40, 4, pp. 53-65.
  • 8. Castanga, A. & Ranieri, A. (2008). Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment, Environmental Pollution, 157, pp. 1461-1469.
  • 9. Chen, C.P., Frank, T.D. & Long, S.P. (2009). Is a short, sharp shock equivalent to long-term punishment? Contrasting the spatial pattern of acute and chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging, Plant Cell and Environment, 32, pp. 327-335.
  • 10. Chernikova, T., Robinson, J.M., Lee, E.H. & Mulchi, C.L. (2000). Ozone tolerance and antioxidant enzyme activity in soybean cultivars, Photosynthesis Research, 64, pp. 15-26.
  • 11. Crutzen, P.J. & Lelieveld, J. (2001). Human impacts on atmospheric chemistry, Annual Review of Earth and Planetary Science, 29, pp. 17-45.
  • 12. Esposito, M.P., Ferreira, M.L., Sant’Anna, S.M.R., Domingos, M. & Souza, S.R. (2009). Relationship between leaf antioxidants and ozone injury in Nicotiana tabacum ‘Bel W3’ under environmental in Sao Paulo, SE - Brazil, Atmospheric Environment, 43, pp. 619-623.
  • 13. Filella, I., Peñuelas, J. & Ribas, A. (2005). Using plant biomonitors and flux modelling to develop O3 dose-response relationship in Catalonia, Environmental Pollution, 134, pp. 145-151.
  • 14. Gill, S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiology and Biochemistry, 48, pp. 908-930.
  • 15. Guidi, L., Degl’Innocenti, E., Giordano, C., Biricolti, S. & Tattini, M. (2010). Ozone tolerance in Phaseouls vulgaris depends on more than one mechanism, Environmental Pollution, 158, pp. 3164-3171.
  • 16. Hammerschmidt, R. Nucles, E.M. & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium, Physiology Plant Pathology, 20, pp. 73-82.
  • 17. Heath, R.L. (2008). Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environmental Pollution, 155, pp. 453-463.
  • 18. Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y. & Matsui, H. (2001). A large family of class III plant peroxidases, Plant Cell Physiology, 42, pp. 462-468.
  • 19. Holloway, T., Fiore A. & Galanter Hastings, M. (2003). Intercontinental transport of air pollution: will emerging science lead to a new hemispheric treaty? Environmental Science & Technology, 37, pp. 4535-4542.
  • 20. Iriti, M. & Faoro, F. (2008). Oxidative stress, the paradigm of ozone toxicity in plants and animals, Water Air and Soil Pollution, 187, pp. 285-301.
  • 21. Karlsson, G.P., Karlsson, P., Soja, G, Vandermeiren, K. & Pleijel, H. (2004). Test of the short-term critical levels for acute ozone injury on plants - improvements by ozone uptake modelling and the use of an effect threshold, Atmospheric Environment, 38, pp. 2237-2245.
  • 22. Kley, D., Kleinmann, M., Sanderman, H. & Krupa, S. (1999). Photochemical oxidants: state of the science, Environmental Pollution, 100, pp. 19-42.
  • 23. Kumari, S., Agrawal, M. & Singh, A. (2015). Effects of ambient and elevated CO2 and ozone on physiological characteristics, antioxidative defence system and metabolites of potato in relation to ozone flux, Environmental and Experimental Botany, 109, pp. 276-287.
  • 24. Mika, A. & Luthje, S. (2003). Properties of guaiacol peroxidase activities isolated from corn root plasma membranes, Plant Physiology, 132, pp. 1489-1498.
  • 25. Monks, P.S., Archibald, A.T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K.S., Mills, G.E., Stevenson, D.S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O. & Williams, M.L. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmospheric Chemistry and Physics, 15, pp. 8889-8973.
  • 26. Nakano, Y. & Asada, K. (1987). Purification of ascorbate peroxidase, its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical, Plant Cell Physiology, 28, pp. 131-140.
  • 27. Official Journal of the European Union L 152/1. 2008. DIRECTIVE 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.
  • 28. Otero, N., Sillmann J., Schnell J.L., Rust H.W. & Butlwr T. (2016). Synoptic and meteorological drivers of extreme ozone, Environmental Research Letters, 11, 024005, doi:10.1088/1748-9326/11/2/024005.
  • 29. Ranieri, A., Castagna, A., Pacini, J., Baldan, B., Mensuali-Sodi, A. & Soldatini, G.F. (2003). Early production and scavenging of hydrogen peroxide in apoplast of sunflowers plants exposed to ozone, Journal of Experimental Botany, 54, pp. 2529-2540.
  • 30. Reid, N., Yap, D. & Bloxam, R. (2008). The potential role of background ozone on current and emerging air issues: An overview, Air Quality and Atmospheric Health, 1, pp. 19-29.
  • 31. Revell, L.E., Tmmon, F., Stenke, A., Sukhodolov, T., Coulon, A., Rozanov, E., Garny, H., Grewe, V. & Peter T. (2015). Divers of tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0, Atmospheric Chemistry and Physics, 15, pp. 5887-5902.
  • 32. Scebba, F., Pucciarelli, I., Soldatini, G.F. & Ranieri, A. (2003). O3-induced changes in the antioxidant systems and their relationship to different of susceptibility of two clover species, Plant Science, 165, pp. 583-593.
  • 33. Silva, D.T., Meireles, S.T. & Mores, R.M. (2012). Relationship between ozone, meteorological conditions, gas exchange and leaf injury in Nicotiana tabacum Bel W3 in a sub-tropical region, Atmospheric Environment, 60, pp. 211-216.
  • 34. Simon, V., Luchetta, L. & Torres L. (2001). Estimating the emission of volatile organic compounds (VOC) from the French forest ecosystem, Atmospheric Environment, 35(1), pp. 115-126.
  • 35. Ueda, Y., Uehara, N., Sasaki, H. & Kobayashi, K. (2013). Impacts of acute ozone stress on superoxide and reactive oxygen species (ROS) formation in rice leaves, Plant Physiology and Biochemistry, 70, pp. 396-402.
  • 36. Van Camp, W., Van Montagu, M. & Inze, D. (1998). H2O2 and NO: redox signals in disease resistance, Trends in Plant Science, 3, pp. 330-334.
  • 37. Verge, X., Chapuis, A. & Delpoux, M. (2002). Bioindicator reliability: the example of Bel W3 tobacco (Nicotiana tabacum L.), Environmental Pollution, 118, pp. 337-349.
  • 38. Vingarzan, R. (2004). A review of surface ozone background levels and trends, Atmospheric Environment, 38, pp. 3431-3442.
  • 39. Vysniauskiené, R. & Ranceliené, V. (2008). Changes in the activity of antioxidant enzyme superoxide dismutase in Crepis capillaris plants after the impact of UV-B and ozone, Scientific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Sodininkysté Ir Darzininkysté, 27, pp. 209-214.
  • 40. Zeng, G., Pyle, J.A. & Young, P.J. (2008). Impact of climate change on tropospheric ozone and its global budgets, Atmospheric Chemistry and Physics Discussion, 7, pp. 11141-11189.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ce72678-3518-4997-b963-8f665f7e8ec2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.