PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental Impact of the Stored Dust-Like Zinc and Iron Containing Wastes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of the stored dust-like zinc and iron containing wastes of the mining and processing industry consist of the loss of valuable components and environmental pollution. Thus, the goals of the research were to analyse ecological conditions under the technogenic impact at the waste storage site and to study transformations of the stored dust-like zinc and iron containing wastes in the active supergene zone. Materials are based on the physical laboratory-modelled infiltration of the atmospheric precipitation waters through the zinc and iron containing wastes. Methods include systematically- structured analysis of wastes and disposal site and laboratory techniques (X-ray fluorescence and atomic emission spectrometry). On the basis of laboratory research and field observations of the environmental components in the impact area of the storage of dust-like zinc and iron containing wastes, the article describes regularities of formation of hydrogeochemical halos of contamination by heavy metals and iron. The results also include the description of changes in physico-chemical groundwater composition under the storage area.
Rocznik
Strony
37--42
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Saint Petersburg Mining University, 21st line V.O. 2, Saint Petersburg, 199106, Russian Federation
autor
  • Saint Petersburg Mining University, 21st line V.O. 2, Saint Petersburg, 199106, Russian Federation
Bibliografia
  • 1. Alekseenko, A.V., Pashkevich, M.A., 2016. Novorossiysk agglomeration landscapes and cement production: Geochemical impact assessment. IOP Conference Series: Earth and Environmental Science, 12–50.
  • 2. Alekseenko, V.A., Pashkevich, M.A., Alekseenko A.V., 2017. Metallisation and environmental management of mining site soils. Journal of Geochemical Exploration, 174, 121–127.
  • 3. Baldwin, S.A., Demopoulos, G.P., Papangelakis, V.G., 1995. Mathematical Modelling of the Zinc Pressure Leach Process. Metallurgical and Materials Transaction, 26B, 1035–1047.
  • 4. Beloglazov, I.I., Suslov, A.P. Pedro, A.A., 2014a. Process Control in Ore-Smelting Furnace at Based on Constant Component of the Phase Voltages. Steel in Translation, 44 (12), 901–905.
  • 5. Beloglazov, I.I., Suslov, A.P. Pedro, A.A., 2014b. Change of constant component of phase voltage during melting of zirconium corundum. Tsvetnye Metally, 5, 86–89.
  • 6. Bezel’, V.S., Zhuikova, T.V., 2007. Chemical pollution: Transfer of chemical elements to the aboverground phytomass of herbaceous plants. Russian Journal of Ecology, 38 (4), 238–246.
  • 7. Bolshunova, T.S., Rikhvanov, L.P., Mezhibor, A.M., 2014. Epiphytic lichens as indicators of air pollution in Tomsk Oblast (Russia). IOP Conference Series: Earth and Environmental Science, 21 (1), 12–43.
  • 8. Fomenko, A.I., 2006. Scientific substantiation of the technology to utilize dispersed solid wastes of an industrial production. Cherepovets, pp. 411.
  • 9. Jalkanen, H., Oghbasilasie, H., Raipala, K., 2005. Recycling of steelmaking dust – the RADUST concept. Journal of Mining and Metallurgy, 41, 1–16.
  • 10. Lytaeva, T.A., Pashkevich, M.A., 2013. Recycling of the dust from aspiration and gas cleaning systems of steelmaking. Scientific Bulletin of the Moscow State Mining University, 7 (40), 46–50.
  • 11. Machado da Silva, J., Brehm, F.A., 2006. Characterization study of electric arc furnace dust phases. Materials Research, 9 (1), 25–36.
  • 12. Nyirenda, R.L., 1991. The processing of steelmaking flue-dust: a review. Minerals Engineering, 4, 1003–1025.
  • 13. Pashkevich, M.A., Alekseenko, A. V., Vlasova, E. V., 2015. Biogeochemical and geobotanical assessment of marine ecosystems conditions (Novorossiysk city). Water and Ecology, 2015 (3), 67–80.
  • 14. Rikhanov, L.P. et al., 2011. Trace elements in human organs and tissues and their significance for environmental monitoring. Geochemistry International, 49 (7), 738–742.
  • 15. Roca, N., Pazos, M.S., Bech, J., 2012. Background levels of potentially toxic elements in soils: A case study in Catamarca (a semiarid region in Argentina). Catena, 92, 55–66.
  • 16. State report «State and Protection of the Environment of the Russian Federation», 2015.
  • 17. Timofeev, I.V., Kosheleva, N.E., Kasimov, N.S., Gunin, P.D., Enkh-Amgalan, S., 2016. Geochemical transformation of soil cover in copper–molybdenum mining areas (Erdenet, Mongolia). Journal of Soils and Sediments, 16 (4), 1225–1237.
  • 18. Yaroshenko, Yu.G., 2011. The use of secondary resources of ferrous metallurgy: Problems and solutions. Metallurgical heat engineering, Dnepropetrovsk, 3 (18), 164–176.
  • 19. Zhuikova, T. V. et al., 2015. Specific features of soils and herbaceous plant communities in industrially polluted areas of the Middle Urals. Russian Journal of Ecology, 46 (3), 213–221.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ce6cd4e-7f44-42d8-bc74-e49bc102ef9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.