PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Welding with micro-jet cooling as a way to improve the mechanical properties of mode of transportation shaft surface

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of surface welding with micro-jet cooling allows to control the structure of the surface layer. It is a way to significantly increase the mechanical properties (for example hardness) of the surface layer. The effect of this is to extend the life of the kinematic pair. The main aim of this paper was to determine the influence of using micro-jet cooling for surface welding on tribological properties (e.g., friction coefficient and weight loss). Results of traditional surface welding (without micro-jet cooling) were compared with results of surface welding with micro-jet cooling. In this case, the medium of cooling was argon and nitrogen. Hardness, time to seizure, friction coefficient, and specimen weight loss were compared. The results showed that the use of a suitable cooling medium for surface welding process could improve the tribological properties of the surface weld.
Czasopismo
Rocznik
Strony
65--76
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Silesian University of Technology, Faculty of Transport, Krasinskiego st. 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Burbank, J. & Woydt, M. Friction and wear reductions in slip-rolling steel contacts through preconditioned chemical tribofilms from bismuth compounds. Wear. 2016. Vol. 360–361. P. 29-37.
  • 2. Zhang, N. & Zhang, J. & Lu, J. & Zhang, M. & Zeng, D. & Song, Q. Wear and friction behawior of austempered ductile iron as railway wheel material. Materials & Design. 2016. Vol. 89. P. 815-822.
  • 3. Klimpel, A. Napawanie i natryskiwanie cieplne. Warszawa: WNT. 2000. 56 p. [In Polish: Klimpel, A. Welding and thermal spraying].
  • 4. Leitner, M. & Pichler, P. & Steinwender, F. & Guster, Ch. Wear and fatigue resistance of mild steel components reinforced by arc welded hard layers. Surface and Coatings Technology. 2017. Vol. 330. P. 140-148.
  • 5. Adamiec, P. & Dziubiński, J. Wytwarzanie i właściwości warstw wierzchnich elementów maszyn transportowych. Gliwice: Silesian University of Technology. 2005. 84 p. [In Polish: Adamiec P. & Dziubiński J. Production and properties of surface layers of transport machine elements].
  • 6. PN-H-04337:1988 Badania wytrzymałościowe metali -- Próba odporności na zatarcie na maszynie Amslera. Warszawa: Polski Komitet Normalizacyjny. 6 p. [In Polish: Metal strength tests - Amsler resistance test. Warsaw: Polish Committee of Standardization.]
  • 7. Xu, G. & Wang, J. & Li, P. & Zhu, J. & Cao, Q. Numerical analysis of heat transfer and fluid flow in swing arc narrow gap GMA welding. Journal of Materials Processing Technology. 2018. Vol. 252. P. 260-269.
  • 8. Cheon, J. & Na, S.-J. Influence of simulation methods of temperature distribution on thermal and metallurgical characteristics in GMA welding. Materials & Design. 2016. Vol. 10. P. 183-194.
  • 9. Di, X. & Ji, S. & Cheng, F. & Wang, D. & Cao, J. Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding. Materials & Design. 2015. Vol. 88. P. 505-513.
  • 10. Wang, L.L. & Wei, H.L. & Xue, J.X. & DebRoy, T. Special features of double pulsed gas metal arc welding. Journal of Materials Processing Technology. 2018. Vol. 251. P. 369-375.
  • 11. Lee, J.M. & Seo, H.D. & Chung, H. Efficient welding distortion analysis method for large welded structures. Journal of Materials Processing Technology. 2018. Vol. 256. P. 36-50.
  • 12. Kumar, S. & Nath, S.K. & Kumar, V. Continuous cooling transformation behavior in the weld coarse grained heat affected zone and mechanical properties of Nb-microalloyed and HY85 steels. Materials & Design. 2016. Vol. 90. P. 177-184.
  • 13. Lisiecki, A. Welding of titanium alloy by different types of lasers. Archives of Materials Science and Engineering. 2012. Vol. 5. No. 2. P. 209-218.
  • 14. Kurc-Lisiecka, A. & Lisiecki, A. Laser welding of the new grade of advanced high-strength steel DOMEX 960. Materials and Technology. 2017. Vol. 51. No. 2. P. 199-204.
  • 15. Hadryś, D. & Węgrzyn, T. & Piwnik, J. & Wszołek, Ł. & Węgrzyn, D. Compressive strength of steel frames after welding with micro-jet cooling. Archives of Metallurgy and Materials. 2016. Vol. 61. No. 1. P. 123-126.
  • 16. Hadrys, D. Impact load of welds after micro-jet cooling. Archives of Metallurgy and Materials. 2013. Vol. 60. No. 4. P. 2525-2528.
  • 17. Tarasiuk, W. & Szczucka-Lasota, B. & Piwnik, J. & Majewski, W. Tribological properties of super field weld with micro-jet process, Advanced Materials Research. 2014. Vol. 1036. P. 452-457.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ce0e0e1-4a02-4812-86c9-31aa712295f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.