PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of two fracture models in impact simulations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following discussion concerns modelling of fracture in steel plates during an impact test, in which both target and striker are manufactured from the same material, high-strength high-hardness armour steel – Mars® 300. The test conditions (3 mm thick targets, projectiles with different nose shapes at impact velocity lower than 400 m/s) result in severely damaged components, which results in an analysis of stress states showing material failure. Numerical analyses are performed using two material models: the Johnson-Cook approach, as traditionally used in impact simulations, accounting for the effect of stress triaxiality, strain rate and temperature and for comparison, a simulation by means of the stress triaxiality and Lode angle parameter-dependent Hosford-Coulomb model, also incorporating the effect of the strain rate on a fracture initiation. The aim of the study is to analyse the mechanisms of penetration and perforation observed in the armour steel plates and validation of the modelling approaches.
Rocznik
Strony
317--325
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • ISL – French-German Research Institute of Saint-Louis, France
autor
  • ETH Zürich – Department of Mechanical and Process Engineering, Computational Modeling of Materials in Manufacturing, Switzerland
autor
  • ETH Zürich – Department of Mechanical and Process Engineering, Computational Modeling of Materials in Manufacturing, Switzerland
Bibliografia
  • [1] Industeel Brochure. MARS® 300 perforated MARS®300. France: Industeel; 2015 November.
  • [2] T. Fras, A. Murzyn, and P. Pawlowski, “Defeat mechanisms provided by slotted add-on bainitic plates against small-calibre 7.62 mm£51 AP projectiles”, Int. J. Impact Eng. 103, 241‒53 (2017).
  • [3] T. Fras and N. Faderl, “Influence of add-on perforated plates on the protective performance of light-weight armour systems”, Problems of Mechatronics. Armament, Aviation, Safety Eng. 9.1.13, 31‒48 (2018).
  • [4] T. Fras, C.C. Roth, and D. Mohr, “Dynamic Perforation of Ultra-hard High-Strength Armour Steel: Impact Experiments and Modelling”, Int. J. Impact Eng. 131, 256‒71 (2019).
  • [5] T. Fras, C.C. Roth, and D. Mohr, “Fracture of high-strength armour steel under impact loading”,Int. J. Impact Eng. 111, 147‒64 (2018).
  • [6] C.C. Roth and D. Mohr, “Effect of Strain Rate on Ductile Fracture Initiation in Advanced High Strength Steel Sheets: Experiments and Modelling”, Int. J. Plasticity 56, 19–44 (2014).
  • [7] C.C. Roth and D. Mohr, “Ductile fracture experiments with locally proportional loading histories”, Int. J. Plasticity 79, 328‒54 (2016).
  • [8] M. Dunand and D. Mohr, “Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities”, J. Mech. Physics Solids. 66, 133‒53 (2014).
  • [9] D. Mohr and J.C. Marcadet, “Micromechanically-motivated Phenomenological Hosford-Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialites”, Int. J. Solids Structures, 67‒68, 40‒55 (2015).
  • [10] G.R. Johnson and W.H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures”, in: Proceed 7thInt. Symp. on Ballistics IBS. The Hague; 541–7 (1983).
  • [11] G.R. Johnson and W.H. Cook, “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures”, Eng. Fract. Mech. 21, 31‒48 (1985).
  • [12] T. Børvik, M. Langseth, O.S. Hopperstad, and K.A. Malo, “Ballistic penetration of steel plates”, Int. J. Impact Eng. 22(9), 855–86 (1999).
  • [13] T. Børvik, M. Langseth, O.S. Hopperstad, and K.A. Malo, “Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part I: experimental study”, Int. J. Impact Eng.27(1), 19–35 (2002).
  • [14] T. Børvik, M. Langseth, O.S. Hopperstad, and K.A. Malo, “Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with f lat, hemispherical and conical noses: part II: numerical simulations”, Int. J. Impact Eng. 27(1), 37–64 (2002).
  • [15] J. Awerbuch, “A mechanics approach to projectile penetration”, Technion-Israel Inst of Tech Haifa; 1970.
  • [16] W. Golsdmith and S.A. Finnegan, “Penetration and perforation processes in metal targets at and above ballistic velocities”, Int. J. Mech. Sci. 13(10), 843–66 (1971).
  • [17] R.L. Woodward and M.E. De Morton, “Penetration of targets by flat-ended projectiles”, Int. J. Mech. Sci. 18(3), 119–27 (1976).
  • [18] L.E. Schwer and C. A.Windsor, “Aluminum Plate Perforation: A Comparative Case Study Using Lagrange With Erosion, Multi-Material ALE, and Smooth ParticleHydrodynamics”, Proceedigns 7th European LS-DYNA conference 2009.
  • [19] M. Becker, M. Seidl, M. Mehl, and M.Souli, “Numerical and Experimental Investigation of SPH, SPG, and FEM for High-Velocity Impact Applications”, Proceedigns of 12th European LS-DYNA Conference 2019.
  • [20] T. Fras, L. Colar, and P. Pawlowski, “Perforation of aluminum plates by fragment simulating projectiles (FSP)”, Int. J. Multiphysics. 9(3), 267‒86 (2015).
  • [21] S.M. Swaddiwudhipong, J. Islamb, and Z.S. Liu, “High velocity penetration/perforation using coupled smooth particle hydrodynamics-finite element method”, Int. J. Protective Struct. 1(4), 489–506 (2010).
  • [22] Arbitrary Lagrangian–Eulerian Methods, Encyclopedia of Computational Mechanics, eds. Stein E, de Borst R and Hughes TJR. Volume 1: Fundamentals. John Wiley & Sons, 2004
  • [23] LS-DYNA Manual, http://www.dynasupport.com/news/ls-dyna-971-manual-pdf [accessed 10.10.2018].
  • [24] D.J. Steinberg, “Equation of state and strength properties of selected materials”, Lawrence Livermore National Library (1996).
  • [25] S. Stanislawek, A. Morka, and T. Niezgoda, “Pyramidal ceramiarmor ability to defeat projectile threat by changing its trajectory”, Bull. Pol. Ac.: Tech. 63(4), 843‒49 (2015).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cd85857-7f49-4181-92b9-ac2ddc108933
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.