PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on Near-Dry EDM Performance Characteristics of MSGNP/Al-7075 Using Air, Argon, Nitrogen, and Freon Dielectric Medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary aim of the current study is to investigate the influence of input parameters of near dry electric discharge machine (ND-EDM) upon the output performances including the MRR, EWR, SR and WLT for the fabricated new metal matrix composite (MMCs) of aluminum A7075 matrix nanocomposites by adding 8% of Microscopic Slide Glass Nanoparticles (MSGNPs) as reinforcements to improve the metallurgical and mechanical properties of Al-7075/MSGNP composites using stir-casting method. In (ND-EDM), the dielectric medium plays a significant role in the procedure responses. In the current work, the vegetable oil with gases, such as air, Ar, mix (Ar+N2), and Freon were used as a dielectric media. The obtained results show that the highest MRR achieved when using the vegetable oil + Freon gas, reached 29.425 mm3/min, and then 26.943 mm3/min when using the vegetable oil + Air as a dielectric. The lowest EWR achieved when employing the vegetable oil + Argon gas, reached 0.120 mm3/min, and then 0.175 mm3/min. The lowest SR values obtained for all the designed experiments reached 3.287 µm when using Ip (10 A), Ton (1600 µsec), and Ar additive gas, followed by 4.567 µm when adding Freon gases to the dielectric. In the ND-EDM, the average of recast white layer thickness in the case of vegetable oil + air, vegetable oil + Ar, vegetable oil + mix (Ar-N2), and vegetable oil + Freon was 1.505, 1.180, 0.456, and 0 μm, respectively. These unique results can be used to increase the service and fatigue life of parts and machines that are exposed to sudden dynamic mechanical or thermal loads, without the need for additional operations to remove this brittle layer, which causes the failure of these parts with a short service life. The created mathematical models displayed a higher value of R-Square and the adjusted R-square, which manifest a better fit. Normal probability plots of the residuals for MRR, EWR, and SR elucidated an obvious pattern (i.e., the points were stabilized in a straight line) which indicates that every factor affects the mentioned responses and the outcomes of these responses from the regression model (predicted value by factorial) and the true values (from the experiments).
Twórcy
  • Production Engineering and Metallurgy Department, University of Technology-Iraq, Baghdad, Iraq
  • Biomedical Engineering Department, University of Technology-Iraq, Baghdad, Iraq
Bibliografia
  • 1. Rajurkar K.P., Sundaram M.M., Malshe A.P. Review of Electrochemical and Electrodischarge Machining. Procedia CIRP 2013; 6: 13–26. doi:10.1016/j. procir.2013.03.002.
  • 2. Abbas N.M., Solomon D.G., Bahari M.F. 2007. A review on current research trends in electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 47: 1214–1228.
  • 3. Pandey A., Singh S. 2010. Current research trends in variants of Electrical Discharge Machining: A review. International Journal of Engineering Science and Technology. 2010; 2: 2172–2191.
  • 4. Grzesik W. 2008. Advanced machining processes of metallic materials: theory, modelling and applications. Elsevier.
  • 5. Groover M.P. Fundamentals of modern manufacturing: materials processes, and systems. John Wiley & Sons. 2007.
  • 6. Ali S.M. Influence of Electrodes and Parameters on Micro-EDM Drilling Performances of 304L Stainless Steel” 2nd International Iraqi Conference on Engineering Technology and its Applications (2ndIICETA), 27–28, August 2019, Proceedings of the IEEE Xplore, 1–6, 2020.
  • 7. Paramashivan S.S., Mathew J., Mahadevan S. 2012. Mathematical modeling of aerosol emission from die sinking electrical discharge machining process. Applied Mathematical Modelling. 2012; 36: 1493–1503.
  • 8. Abrol A., Singla V.K. Study on Optimization and Machining Characteristics of Electric DischargeMachining Using Powder Suspension Dielectric Fluids. Thapar University. 2013.
  • 9. Abukhshim N.A., Mativenga P.T., Sheikh M.A. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. International Journal of Machine Tools and Manufacture. 2006; 46: 782–800.
  • 10. Al-Khazraji A., Amin S., Ali S.M. The Effect of SiC powder Mixing Electrical Discharge Machining (PMEDM) on Fatigue Life of AISI D2 Die Steel”, Engineering Science and Technology, an International Journal. 2016; 19: 1400–1415.
  • 11. Shivakoti I., Kibria G., Diyaley S., Pradhan B.B. Multi-objective optimization and analysis of electrical discharge machining process during micro-hole machining of D3 die steel employing salt mixed deionized water dielectric. Journal of Computational & Applied Research in Mechanical Engineering. 2013; 3: 27–39.
  • 12. Jose M., Sivapirakasam S.P., Surianarayanan M. 2010. Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process. Industrial Health: 48: 478–486.
  • 13. Goh, C.L., Ho, S.F. Contact Dermatitis from Dielectric Fluids in Electrodischarge Machining. Contact Dermatitis. 1993; 28(3): 134–138. DOI: 10.1111/ j.1600-0536.1993.tb03372.x.
  • 14. Al-Khazraji B.A., Amin S., Ali S.M. Fatigue Life of Graphite Powder Mixing Electrical Discharge Machining AISI D2 Tool Steel. Journal of Solid Mechanics. 2018; 10(2): 338–353.
  • 15. Singh N.K., Pandey P.M., Singh K.K., Sharma M.K. Steps Towards Green Manufacturing through EDM Process: A Review. Cogent Eng. 2016; 3(1): 1–13. DOI: 10.1080/23311916.2016.1272662.
  • 16. Kumar A., Maheshwari S., Sharma C., Beri N. Research Developments in Additives Mixed Electrical Discharge Machining (AEDM): A State of Art Review. Mater. Manuf. Process. 2010; 25(10): 1166–1180. DOI: 10.1080/10426914.2010.502954
  • 17. Dhakar K., Dvivedi A. Dry and Near-Dry Electric Discharge Machining Processes, In Advanced Manufacturing Technologies. Materials Forming, Machining and Tribology; Gupta, K. Eds; Springer: Cham. 2017; 249–266.
  • 18. Nimbalkar V.S., Shete P.M.T. Experimental Investigation of Machining Parameters Using Solid and Hollow Electrode for EDM of Ti-6Al-4V. Int. Res. J. Eng. Technol. 2017; 4: 2345.
  • 19. Wang X.; Yi S.; Guo H.; Li C.; Ding S. Erosion Characteristics of Electrical Discharge Machining Using Graphene Powder in Deionized Water as Dielectric. Int. J. Adv. Manuf. Technol. 2020; 108: 357–368. [CrossRef]
  • 20. Jahan M.P., Kakavand P., Alavi F. A Comparative Study on Micro-Electro-Discharge-Machined Surface Characteristics of Ni-Ti and Ti-6Al-4V with Respect to Biocompatibility. Procedia Manuf. 2017 10: 232–242. [CrossRef]
  • 21. Rahman M., Wang Z.G., Wong, Y.S. A Review on High-Speed Machining of Titanium Alloys. In Proceedings of the 3rd International Conference on Leading Edge Manufacturing in 21st Century, Nagoya, Japan, 19–22 October 2005; 49: 19–28.
  • 22. Hocheng H., Tsai H.Y. Advanced Analysis of Nontraditional Machining; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
  • 23. Alidoosti A., Ghafari-Nazari A., Moztarzadeh F., Jalali N., Moztarzadeh S., Mozafari M. Electrical Discharge Machining Characteristics of Nickel-Ti- tanium Shape Memory Alloy Based on Full Factorial Design. J. Intell. Mater. Syst. Struct. 2013; 24: 1546–1556. [CrossRef]
  • 24. Chen S.L., Hsieh S.F., Lin H.C., Lin M.H., Huang J.S. Electrical Discharge Machining of TiNiCr and TiNiZr Ternary Shape Memory Alloys. Mater. Sci. Eng. A. 2007; 445–446: 486–492. [CrossRef]
  • 25. Sahin Y., Murphy S. The effect of fiber orientation of the dry sliding wear of borsic reinforced aluminum alloy. Journal of materials science. 1996; 31: 5399–5407.
  • 26. Amirkhanlou S., Niroumand B. Synthesis and Characterization of 356-SiCp composites by Stir casting and compocasting methods, Trans. Nonferrous. Met. Soc. China. 2010; 20: 788–793.
  • 27. Dhakar K.; Dvivedi A. Parametric Evaluation on Near-Dry Electric Discharge Machining. Mater. Manuf. Process. 2016; 31(4): 413–421. DOI: 10.1080/10426914.2015.1037905.
  • 28. Singh N.K., Pandey P.M., Singh K.K. Experimental Investigations into the Performance of EDM Using Argon Gas-Assisted Perforated Electrodes. Mater. Manuf. Process. 2017; 32(9): 940–951. DOI: 10.1080/10426914.2016.1221079.
  • 29. Gupta P.K., Dvivedi A., Kumar P. Effect of Pulse Duration on Quality Characteristics of Blind Hole Drilled in Glass by ECDM. Mater. Manuf. Process. 2016; 31(13): 1740–1748. DOI: 10.1080/ 10426914.2015.1103857.
  • 30. Bai X., Zhang Q.H., Yang T.Y., Zhang J.H. Research on Material Removal Rate of Powder Mixed near Dry Electrical Discharge Machining. Int. J. Adv. Manuf. Technol. 2013(68); 1757–1766.
  • 31. Upadhyay L., Aggrawal M.L., Pandey P.M. Performance Analysis of Magnetorheological FluidAssisted Electrical Discharge Machining. Mater. Manuf. Process. 2018; 33(11): 1205–1213. DOI: 10.1080/10426914.2017.1364852.
  • 32. Van Dijck F.S., Dutre W.L. Heat Conduction Model for the Calculation of the Volume of Molten Metal in Electric Discharges. J. Phys. D. Appl. Phys. 1994; 7: 899–910. DOI: 10.1088/0022-3727/ 7/6/316.
  • 33. Prakash C., Kansal H.K., Pabla, B.S., Puri, S. Experimental Investigations in Powder Mixed Electric Discharge Machining of Ti–35Nb–7Ta–5Zrβ- Titanium Alloy. Mater. Manuf. Process. 2017; 32(3): 274–285. DOI: 10.1080/10426914.2016.1198018.
  • 34. Kruth J.P., Stevens L.L., Froyen B.L., Leuven K.U. Study of the white layer of a surface machined by diesinking electrodischarge machining, Ann. CIRP. 1995; 44(1): 169-172.
  • 35. Pragadish N., Pradeep Kumar M. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design, JMST. 2015; 29(4): 1737-1743.
  • 36. Rebelo J.C., Dias A.M., Kremer D., Lebrun J.L. Influence of EDM pulse energy on the surface integrity of martensitic steels, J. of Materials Processing Technology. 1998; 84(1-3): 90-96.
  • 37. Kumar S., Batish A., Singh R., Singh T.P. A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys, JMST, 2014; 28(7): 2831-2844.
  • 38. Kunleda M., Miyoshi Y., Takaya T., et al. High speed 3D milling by dry EDM. CIRP. 2003; 52: 147–150. 39. Li L.Q., Zhao W.S., Di S.C., et al. Experimental study on electrical discharge machining in gas. JME. 2006; 42: 203.
  • 40. Liqing L., Yingjie S. Study of dry EDM with oxy- gen-mixed and cryogenic cooling approaches. Pro- cedia CIRP. 2013; 6: 344–350.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cd85793-ae3a-4751-b2e2-5fb13e9c5483
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.