Modelowanie adsorpcji chloroformu wewnątrz nanorurek węglowych (cz. l)

Sylwester Furmaniak*

Wprowadzenie

Lotne związki organiczne (LZO) są istotną grupą zanieczyszczeń powietrza [1-3]. LZO to substancje organiczne charakteryzujące się wysoka prężnością par [4] (wśród nich można odnaleźć związki należące do różnych grup: węglowodory i ich halogenopochodne, alkohole, etery, aldehydy, ketony, aminy, nitryle i inne). LZO na ogół są szkodliwe zarówno dla zdrowia człowieka, jak i środowiska naturalnego – bardzo często wykazują właściwości toksyczne, kancerogenne, mutagenne, teratogenne czy też alergizujące [1-3,5-7]. Związki tego typu mogą powstawać w procesach spalania (w związku z czym często występują w gazach odlotowych), ale są również emitowane w wielu innych procesach przemysłowych [1-3].

Zaproponowano różne metody ograniczenia emisji LZO [1-3]. Wiele z nich bazuje na procesie adsorpcji [4,8-13]. Ważną grupę stosowanych w praktyce adsorbentów stanowią materiały węglowe (głównie węgle aktywne) [14-17]. Jednakże dużego potencjału praktycznego upatruje się również w nowoczesnych nanomateriałach, jakimi są nanorurki węglowe [18,19]. Materiały te dzięki specyficznej regularnej budowie wykazują dobre właściwości adsorpcyjne. Stosowane metody syntezy pozwalają na wytwarzanie nanorurek różniących się parametrami geometrycznymi, jak średnica czy liczba budujących je ścianek. W związku z tym, możliwe jest dobranie adsorbentu odpowiednio do potrzeb.

W niniejszej pracy wybrano chloroform (trichlorometan, CHCl₃) jako modelowy LZO. Jego adsorpcję wewnątrz jednościennych nanorurek węglowych modelowano z wykorzystaniem symulacji Monte Carlo. Wykorzystano rurki o dwóch różnych typach chiralności oraz systematycznie zmieniającej się średnicy. Zbadano jak te czynniki wpływają na właściwości adsorpcyjne oraz mechanizm procesu, finalnie proponując korelacje ilościowe.

Metodyka symulacji i obliczeń

W symulacjach wykorzystano serię 18 jednościennych nanorurek węglowych typu (n,0), tj. zygzakowatych (ang. *zig zag*): (12,0), (14,0), (16,0), (18,0), (20,0), (22,0), (24,0), (26,0), (28,0), (30,0), (34,0), (38,0), (42,0), (46,0), (50,0), (60,0), (80,0) oraz (100,0). Dodatkowo, w celu sprawdzenia czy chiralność rurek wpływa na ich właściwości adsorpcyjne, użyto 9 nanorurek fotelowych (ang. *armchair*, typu (n,n)): (8,8), (10,10), (12,12), (16,16), (20,20), (24,24), (28,28), (32,32) oraz (36,36). Wybrane nanorurki przedstawiono na rysunku 1, zaś w tabeli 1 zestawiono charakterystykę geometryczną wszystkich rozważanych nanorurek. W ogól-

Tabela 1. Charakterystyka rozważanych jednościennych nanorurek węglowych (N_c – liczba atomów budujących rozważany fragment, D – średnica geometryczna (wzór (1)), D_{eff} – średnica efektywna (wzór (2)))

Nanorurka		N _C	<i>D</i> [nm]	D _{eff} [nm]	
nanorurki zygzakowate (typu (n,0))	(12,0)	480	0,9328	0,5928	
	(14,0)	560	1,0883	0,7483	
	(16,0)	640	1,2438	0,9038	
	(18,0)	720	1,3993	1,0593	
	(20,0)	800	1,5547	1,2147	
	(22,0)	880	1,7102	1,3702	
	(24,0)	960	1,8657	1,5257	
	(26,0)	1040	2,0212	1,6812	
	(28,0)	1120	2,1766	1,8366	
	(30,0)	1200	2,3321	1,9921	
	(34,0)	1360	2,6431	2,3031	
	(38,0)	1520	2,9540	2,6140	
	(42,0)	1680	3,2650	2,9250	
	(46,0)	1840	3,5759	3,2359	
	(50,0)	2000	3,8869	3,5469	
	(60,0)	2400	4,6642	4,3242	
	(80,0)	3200	6,2190	5,8790	
	(100,0)	4000	7,7737	7,4337	
nanorurki fotelowe (typu(n,n))	(8,8)	576	1,0772	0,7372	
	(10,10)	720	1,3465	1,0065	
	(12,12)	864	1,6157	1,2757	
	(16,16)	1152	2,1543	1,8143	
	(20,20)	1440	2,6929	2,3529	
	(24,24)	1728	3,2315	2,8915	
	(28,28)	2016	3,7701	3,4301	
	(32,32)	2304	4,3086	3,9686	
	(36,36)	2592	4,8472	4,5072	

ności, średnicę (*D*) nanorurki o danych indeksach chiralności (*n*,*m*) można obliczyć w oparciu o wzór [20]:

$$D(n,m) = \frac{d_{C-C}}{\pi} \sqrt{3(n^2 + nm + m^2)}$$
(1)

gdzie d_{C-C} oznacz długość wiązania węgiel-węgiel. Średnica określona równaniem (1) ma charakter geometryczny – jest to odległość między środkami atomów budujących ścianę rurki. Ponieważ atomy węgla mają niezerowy rozmiar, faktyczna objętość dostępna dla cząsteczek adsorbatu wewnątrz nanorurki jest mniejsza i definiowana przez tzw. średnicę efektywną:

$$D_{eff} = D - 0,34 \text{ nm}$$
 (2)

gdzie 0,34 nm oznacza średnicę atomu węgla.

W symulacjach rozważano fragmenty nanorurek o długości 4,2300 nm dla rurek zygzakowatych oraz 4,3959 nm dla rurek fotelowych. Wzdłuż ich osi zastosowano periodyczne warunki brzegowe [21], co likwiduje powierzchnie zewnętrzne i formalnie odpowiada adsorpcji wewnątrz nanorurek nieskończonych. Izotermy adsorpcji chloroformu wewnątrz każdej z rozważanych nanorurek wysymulowano dla temperatury T = 298 K metodą Monte Carlo z wykorzystaniem techniki zaproponowanej przez Yana i de Pablo (ang. hyper parallel tempering Monte Carlo, HPTMC) [22]. Dla każdego układu uwzględniono 59 replik odpowiadających różnym wartościom ciśnienia względnego $(p/p_s, \text{ gdzie } p \text{ oraz } p_s \text{ oznaczają odpowiednio ciśnienie bez$ względne oraz prężność nasyconej pary CHCl₃) z zakresu 1,0×10⁻⁸ – 1,0. Podczas modelowania metodą HPTMC wykonywano 5×10⁶ cykli obliczeniowych (jeden cykl stanowiło 100 prób zmiany stanu układu na jeden z losowo wybranych z równym prawdopodobieństwem sposobów: (i) kreacji, (ii) anihilacji lub (iii) rotacji i/lub przesunięcia losowo wybranej cząsteczki oraz jedna próba zamiany konfiguracji pomiędzy parą losowo wybranych replik). Wyniki dla początkowych 1×10⁶ cykli odrzucano (osiąganie stanu równowagi), zaś w oparciu o pozostałe cykle obliczano średnie statystyczne.

Zarówno cząsteczki chloroformu jak i nanorurki węglowe były traktowane podczas symulacji jako układy sztywne. Molekuły CHCl₃ modelowano z wykorzystaniem zestawu parametrów zaproponowanego przez Kamatha i wsp. [23]. Energię oddziaływania pary cząsteczek obliczano jako sumę energii oddziaływań wszystkich par centrów w nich występujących (5 centrów w każdej):

$$U_{ff}(r,\omega_{1},\omega_{2}) = \sum_{i=1}^{5} \sum_{j=1}^{5} \left[U_{LJ}^{ij}(r_{ij}) + U_{electr}^{ij}(r_{ij}) \right]$$
(3)

gdzie *r* oznacza odległość między środkami cząsteczek, ω_1 i ω_2 charakteryzują ich wzajemne ułożenie kątowe, r_{ij} jest odległością między centrami *i* oraz *j*, zaś U_{LJ}^{ij} i U_{electr}^{ij} oznaczają odpowiednio energię oddziaływań dyspersyjnych oraz elek-

Rys. 1. Wybrane nanorurki węglowe (po lewej przedstawiono widok z boku na rozważany fragment – uwidoczniono jedynie wiązania węgiel-węgiel; po prawej przedstawiono widok wzdłuż osi rurek – poszczególne atomy węgla przedstawiono jako kulki)

trostatycznych (pomiędzy centrami *i* oraz *j*). Oddziaływania dyspersyjne były modelowane z wykorzystaniem potencjału Lennarda-Jonesa [21]:

$$U_{LJ}^{ij}\left(r_{ij}\right) = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6} \right] \times S\left(r_{ij}\right)$$
(4)

gdzie σ_{ij} oraz ε_{ij} oznaczają odpowiednio średnicę kolizji oraz głębokość studni potencjału, zaś $S(r_{ij})$ jest funkcją wygaszającą, zdefiniowaną następująco [24]:

BADANIA

$$S(r_{ij}) = \begin{cases} 1 & r_{ij} \le r_{on} \\ -6\left(\frac{r_{ij} - r_{on}}{r_{cut} - r_{on}}\right)^{5} + 15\left(\frac{r_{ij} - r_{on}}{r_{cut} - r_{on}}\right)^{4} - 10\left(\frac{r_{ij} - r_{on}}{r_{cut} - r_{on}}\right)^{3} + 1 & r_{on} < r_{ij} < r_{cut} \\ 0 & r_{ij} \ge r_{cut} \end{cases}$$
(5)

gdzie *r_{cut}* oraz *r_{on}* oznaczają odpowiednio odległość odcięcia oraz początkową odległość międzycentrową, od której rozpoczyna się wygaszanie energii.

Energia oddziaływań elektrostatycznych między parami centrów obliczano zgodnie z potencjałem zaproponowanym przez Fennela i Gezeltera [25]:

$$U_{electr}^{ij}\left(r_{ij}\right) = \begin{cases} \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}} \left[\frac{\operatorname{erfc}\left(\alpha r_{ij}\right)}{r_{ij}} - \frac{\operatorname{erfc}\left(\alpha r_{cut}\right)}{r_{cut}} + \left(\frac{\operatorname{erfc}\left(\alpha r_{cut}\right)}{r_{cut}^{2}} + \frac{2\alpha}{\sqrt{\pi}} \times \frac{\exp\left(-\alpha^{2}r_{cut}^{2}\right)}{r_{cut}}\right) \left(r_{ij} - r_{cut}\right) \right] & r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases}$$

gdzie q_i oraz q_j oznaczają odpowiednio ładunki punktowe odpowiadające poszczególnym centrom, $\varepsilon_0 = 8,8543 \times 10^{-12} \text{ C}^2/\text{J/m}$ to przenikalność elektryczna próżni, zaś $\alpha = 2,0 \text{ nm}^{-1}$ [25] oznacza współczynnik tłumienia. Warto zaznaczyć, że równanie (6) jest prostą alternatywa dla metody sum Ewalda [25].

Oddziaływania między poszczególnymi cząsteczkami adsorbatu (CHCl₃) oraz nanoruką obliczano jako sumę jedynie oddziaływań dyspersyjnych (atomy budujące nanorurki były pozbawione ładunku elektrycznego):

$$U_{sf} = \sum_{i=1}^{N_c} \sum_{j=1}^{5} U_{LJ}^{ij} \left(r_{ij} \right)$$
(7)

(6)

gdzie N_C oznacza liczbę atomów C budujących rozważany fragment rurki.

Tabela 2 zestawia wszystkie wartości parametrów zastosowanych podczas symulacji. Parametry oddziaływań krzyżowych (miedzy różnymi rodzajami centrów) obliczano z wykorzystaniem reguł mieszania Lorentza-Berthelota [21]. Zarówno dla oddziaływań dyspersyjnych jak i elektrostatycznych zastosowano analogiczną wartość odległości odcięcia: $r_{cut} = 1,5$ nm. Ponadto założono $r_{on} = 1,4$ nm.

W oparciu o średnią liczbę cząsteczek chloroformu obecną w poszczególnych replikach ($\langle N \rangle$) obliczano wartość jego ad-

Tabela 2. Zestawienie wartości parametrów Lennarda-Jonesa oraz ładunków punktowych zastosowanych w symulacjach

	Parametry geometryczne ^{*)}	Rodzaj cen- trum	σ [nm]	ε/k _B [K]	q/e	Źródło litera- turowe
	$d_{C-CI} = 0,176 \text{ nm}$ $d_{C-H} = 0,107 \text{ nm}$ $a_{CI-C-CI} = 111,2^{\circ}$	С	0,341	68,94	-0,235	[23]
chloroform		CI	0,345	138,58	-0,040	
		Н	0,281	10,06	+0,355	
nanorurka węglowa	<i>d_{C-C}</i> = 0,141 nm	С	0,340	28,00	-	[26]

^{*)} *d* – długość wiązania, *a* – kąt między wiązaniami

Pomiary prędkości przepływu powietrza w dygestoriach zgodnie z normą PN EN 14175

z miernikiem testo 480

- bezkierunkowa charakterystyka sondy w zakresie ±20°
- stała czasowa 0,5 sek.
- dokładność ±0,02 m/s ±5% mierzonej wartości
- aktualna kalibracja
- kalkulacja wartości średniej
- kalkulacja odchylenia standardowego lub stopnia turbulencji

www.testo.com.pl

rok 19, nr 5 LAS | 17

sorpcji w przeliczeniu na jednostkę masy nanorurek:

$$a = \frac{\langle N \rangle}{N_C \times M_C} \tag{8}$$

gdzie M_C oznacza masę molową węgla. Ponadto w celu odzwierciedlenia energetyki procesu adsorpcji obliczano wartości izosterycznej entalpii adsorpcji (q^{st}) w oparciu o teorię fluktuacji [21,27]:

$$q^{st} = RT - \frac{\langle U \times N \rangle - \langle U \rangle \times \langle N \rangle}{\langle N^2 \rangle - \langle N \rangle^2}$$
(9)

gdzie *R* to uniwersalna stała gazowa, zaś (...) oznaczają odpowiednie średnie statystyczne dla zespołu (*N* – liczba cząsteczek adsorbatu, *U* – całkowita energia potencjalna układu). Całkowitą wartość *q*st rozbito dodatkowo na przyczynki związane z oddziaływaniami adsorbat-adsorbat (*q*^{ff}) oraz adsorbent-adsorbat (*q*^{sf}):

$$q^{ff} = \frac{\langle U_{ff} \times N \rangle - \langle U_{ff} \rangle \times \langle N \rangle}{\langle N^2 \rangle - \langle N \rangle^2}$$
(10)

$$q^{sf} = q^{st} - q^{ff} \tag{11}$$

gdzie U_{ff} oznacza energię oddziaływań adsorbat-adsorbat.

Jedną z technik szeroko stosowaną w praktyce do analizy mechanizmu adsorpcji są tzw. krzywe rozkładu potencjału adsorpcyjnego (ang. *adsorption potential distribution*, APD) [28,29]. APD jest wyznaczany jako pierwsza pochodna tzw. krzywej charakterystycznej, przedstawiającej wartość adsorpcji w funkcji tzw. potencjału adsorpcyjnego, zdefiniowanego równaniem:

$$A_{pot} = -RT \ln \frac{p}{p_s}$$
(12)

W celu wyznaczenia przebiegów APD dla badanych układów dokonano opisu wysymulowanych izoterm adsorpcji chloroformu za pomocą równania empirycznego (5-modalnego równania Bradleya) w postaci:

$$a = \sum_{i=1}^{5} \frac{a_{m,i} \times K_i \times (p/p_s)^{n_i}}{1 + K_i \times (p/p_s)^{n_i}}$$
(13)

gdzie $a_{m,i}$, K_i oraz n_i są parametrami najlepszego dopasowania. W myśl zasad rachunku różniczkowego zachodzi równość:

$$\frac{da}{dA_{pot}} = \frac{da}{d(p/p_s)} \times \frac{d(p/p_s)}{dA_{pot}}$$
(14)

Kombinacja zależności (12)-(14) wraz z wartościami parametrów równania (13) uzyskanymi w wyniku opisu izotermy pozwala na wygenerowanie przebiegu krzywej APD w parciu o wzór:

$$-\frac{da}{dA_{pot}} = \frac{1}{RT} \times \sum_{i=1}^{5} \frac{n_i \times a_{m,i} \times K_i \times (p/p_s)^{n_i}}{\left(1 + K_i \times (p/p_s)^{n_i}\right)^2}$$
(15)

Powszechnie wiadomo, że w zakresie niskich wartości ciśnienia przebieg izoterm adsorpcji ($a = f(p/p_s)$) ma charakter liniowy [30]. Matematycznie wyraża się to w postaci równania Henryego:

$$a = K_H \times \frac{p}{p_s} \tag{16}$$

Występująca w równaniu (16) stała proporcjonalności K_H (stała Henryego) determinuje nachylenie izotermy. Wartość stałej Henryego może być również traktowana jako prosta miara energii oddziaływań adsorbent-adsorbat, które to przede wszystkim determinują niskociśnieniowy przebieg izotermy adsorpcji.

Określenie wartości K_H wymaga wyboru zakresu (liniowego), w którym spełnione jest równanie (16). Najłatwiej tego dokonać po przekształceniu izoterm do postaci $a/(p/p_s) = f(p/p_s)$. Zgodnie ze wzorem (16) w liniowym zakresie izotermy taka funkcja powinna być stała. W związku z tym, w celu wyznaczenia stałej Henryego dla rozważanych izoterm dokonano analizy przebiegów zależności $a/(p/p_s) = f(p/p_s)$ wyznaczając zakres liniowości (patrz również dyskusja w kolejnym paragrafie). Wartość K_H dla tego zakresu obliczano w oparciu o metodę najmniejszych kwadratów zgodnie ze wzorem:

$$K_{H} = \frac{\sum a \times (p/p_{s})}{\sum (p/p_{s})^{2}}$$
(17)

Wstępnie wybrany zakres był ewentualnie nieznacznie zawężany tak, aby uzyskana wartość współczynnika korelacji linowej (*R*²) była bliska jedności (z dokładnością do czterech miejsc po przecinku).

Część druga artykułu ukaże się w numerze 6/2014 LAB.

* dr Sylwester Furmaniak – Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Zespół Naukowy Fizykochemii Materiałów Węglowych; e-mail: sf@chem.umk.pl, url: www.chem.umk.pl/~aterzyk