PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of the peak flow reduction of small reservoirs. A case study of the Brown Bridge Pond, Michigan, USA

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the high frequency and great damage of flood disasters, it is important to reduce the flood peak when it goes through the reservoir. A hydraulic model which integrates the implicit equation of water balance, water head-discharge carves, and water head-storage carves together, is proposed to simulate the flood peak reduction of a small reservoir. The proposed method was employed to simulate the flood peak reduction in the Brown Bridge Reservoir, Michigan, US. The results show that the proposed method can simulate the flood peak reduction in a small reservoir, and the Brown Bridge Dam can reduce the flood peak when hundred-year floods go through. When all gates or spillways are fully opened, the initial water head of the reservoir significantly influences the capacity of flood peak reduction. When the initial water head of the Brown Bridge Reservoir is 240.18 and 241.40 m, the hundred-year flood peak would be reduced to 23.11 m3/s and 25.85 m3/s, respectively. By optimizing the gates or spillways, the hundred-year flood peak could be reduced. When the initial water head of the reservoir is 241.40 and 240.18 m, the hundred-year flood peak would be reduced to 17.98 and 16.54 m3/s, respectively
Rocznik
Strony
83--94
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • College of He Hai, Chong Qing Jiao Tong University, Chong Qing, 400056, China
autor
  • College of He Hai, Chong Qing Jiao Tong University, Chong Qing, 400056, China
  • Sichuan Institute of Geological Engineering, Investigation Group Co., Ltd., Sichuan, Chengdu 610065, China
autor
  • College of He Hai, Chong Qing Jiao Tong University, Chong Qing, 400056, China
Bibliografia
  • [1] ZOU Q., ZHOU J.Z., ZHOU C., SONG L., GUO J., LIU Y., The practical research on flood risk analysis based on IIOSM and fuzzy a-cut technique, Appl. Math. Model., 2012, 36 (7), 3271–3282. DOI: 10.1016 /j.apm.2011.10.008.
  • [2] HE Y.Y., XU Q.F., YANG S.L., LIAO L., Reservoir flood control operation based on chaotic part- icle swarm optimization algorithm, Appl. Math. Model., 2014, 38 (17–18), 4480–4492. DOI: 10.1016/j.apm. 2014.02.030.
  • [3] PETER S.J., ARAUJO J.C.D., ARAUJO N.A.M., HERRMANN H.J., Flood avalanches in a semiarid basin with a dense reservoir network, J. Hydrol., 2014, 512, 408–420. DOI: 10.1016/j.jhydrol.2014.03.001.
  • [4] HASSABALLAH K., JONOSKI A., POPESCU I., SOLOMATINE D.P., Model-based optimization of down-stream impact during filling of a new reservoir: case study of Mandaya Roserires reservoirs on the Blue Nile River, Water Res. Manage., 2012, 26, 273–293. DOI: 10.1007/s11269-011-9917-8.
  • [5] JIANG Z.Q., SUN P., JI C.M., ZHOU J.Z., Credibility theory based dynamic control bound optimization for reservoir flood limited water level, J. Hydrol., 2015, 529, 928–939. DOI: 10.1016/j.jhydrol.2015.09.012.
  • [6] CHOU F.N.F., WU C.W., Expected shortage-based pre-release strategy for reservoir flood control, J. Hydrol., 2013, 497, 1–14. DOI: 10.1016/j.jhydrol.2013.05.039.
  • [7] ZANDVLIET M.J., BOSGRA O.H., JANSEN J.D., VAN DEN HOF P.M.J, KRAAIJEVANGER J.F.B.M., Bang- -bang control and singular arcs in reservoir flooding, J. Pet. Sci. Eng., 2007, 58 (1–2), 186–200. DOI: 10.1016/j.petrol.2006.12.008.
  • [8] CAI X., LI Y., GUO X.W., WU W., Mathematical model for flood routing based on cellular automaton, Water Sci. Eng., 2014, 7 (2), 133–142. DOI: 10.3882/j.issn.1674-2370.2014.02.002.
  • [9] BARATI R., RAHIMI S., AKBARI G.H., Analysis of dynamic wave model for flood routing in natural rivers, Water Sci. Eng., 2012, 5 (3), 243–258. DOI: 10.3882/j.issn.1674-2370.2012.03.001.
  • [10] HSU M.H., FU J.C., LIU W.C., Flood routing with real-time stage correction method for flash flood forecasting in the Tanshui River, Taiwan, J. Hydrol., 2003, 283 (1–4), 267–280. DOI: 10.1016/S0022-1694 (03)00274-9.
  • [11] ROMANOWICZ R.J., YOUNG P.C., BEVEN K.J., PAPPENBERGER K.J., A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting, Adv. Water Res., 2008, 31 (8), 1048–1056. DOI: 10.1016/j.advwatres.2008.04.015.
  • [12] ZHANG J., ZHANG L.Y., XIE Q., LI Y., DENG S., SHEN F., YANG G., SONG C., An empirical method to investigate the spatial and temporal distribution of annual average groundwater recharge intensity. A case study in Grand River, Michigan, USA, Water Resour. Manage., 2016, 30, 195–206. DOI: 10.1007/s11269-015-1155-z.
  • [13] XIE Z.T., YANG F.L., FU X.L., Mathematical model for flood routing in Jing Jiang River and Dong Ting Lake network, Water Sci. Eng., 2012, 5 (3), 259–268. DOI: 10.3882/j.issn.1674-2370.2012.03.002.
  • [14] NWAOGAZI I.L. Comparative analysis of some explicit-implicit stream flow models, Adv. Water Res., 1987, 10 (2), 69–77. DOI: 10.1016/0309-1708 (87)90011-X.
  • [15] KESSERWANI G., LIANG Q.H., A discontinuous Galerkin algorithm for the two-dimensional shallow water equations, Compt. Meth. Appl. Mech. Eng., 2010, 199 (49–52), 49–52. DOI: 10.1016/j.cma.2010.07.007.
  • [16] ZHOU Y.L., TANG H.W., LIU X.H., A split-characteristic finite element model for 1-D unsteady flows, J. Hydrodyn., 2007, 19, 54–61. DOI: 10.1016/S1001-6058 (07)60028-6.
  • [17] PRASAD U.A.R., MAIYA M.P., MURTHY S.S., Metal hydride water pumping system for low head-high dis-charge applications, Int. J. Hydr. En., 2004, 29 (5), 501–508. DOI: 10.1016/S0360-3199 (03)00084-3.
  • [18] HOLLINGSHEAD C.L., JOHNSON M.C., BARFUSS S.L., SPALL R.E., Discharge coefficient performance of Venturi, standard concentric orifice plate, V-cone and wedge flow meters at low Reynolds number, J. Pet. Sci. Eng., 2011, 78 (3–4), 559–566. DOI: 10.1016/j.petrol.2011.08.008.
  • [19] KO D., NAKAGAWA H., KAWAIKE K., Study on applicability of overflow discharge equation under pressurized flow condition, Disaster Prevention Research Institute Annuals, Kyoto University, 2015, 58, 402–409.
  • [20] VATANKHAH A.R., Explicit solutions for critical and normal depths in trapezoidal and parabolic open channels, Ain Shams Eng. J., 2013, 4 (1), 17–23. DOI: 10.1016/j.asej.2012.05.002.
  • [21] MEHRI A., OMID B., ABDOLRAHIM S., SAHAR M., ERFAN G., Development of flood mitigation strategies to-ward sustainable development, Nat. Haz., 2021, 108, 2543–2567. DOI: 10.1007/s11069-021-04788-5.
  • [22] DEVI D., BARUAH A., SARMA A.K., Characterization of dam-impacted flood hydrograph and its degree of severity as a potential hazard, Nat. Haz., 2022, 112, 1989–2011. DOI: 10.1007/s11069-022-05253-7.
  • [23] RASOUL N., YOUSEF H., A novel method to plan short-term operation rule for gated-spillways during flood, Arab J. Geosci., 2021, 14, 2812. DOI: 10.1007/s12517-021-09126-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cd0bd8f-220d-44ef-863f-b56b69a2706f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.