PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical investigation on the effects of obstruction and side ratio on non-Newtonian fluid flow behavior around a rectangular barrier

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the characteristics of the flow and forced heat transfer of power law non-Newtonian fluids that flow around a quadrilateral and rectangular cylinder that are located in a 2D channel are investigated by use of the finite volume method (FVM) in a steady state flow regime. To this accomplishment, in the constant temperature, the effects of a different obstruction ratio, aspect ratio and Reynolds number are investigated. The Reynolds number in the range 5 ≤ Re ≤ 40, the power index in the range 0.5 ≤ n ≤ 1.4, the aspect ratio in the range 0.5 ≤ a ≤ 2, and the obstruction ratio in the range 0.125 ≤ b ≤ 0.5 were selected. By surveying the drag coefficient profiles, it’s concluded that as the obstruction ratio increases, the drag coefficient is increased, while an increase in the Reynolds number causes the lower drag coefficient. In addition, the drag coefficient is strongly increased by aspect ratio enhancements.
Rocznik
Strony
53--67
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Mechanical Engineering Department, Chabahar Maritime and Marine University, Chabahar, Iran
  • Department of Maritime Engineering, Amirkabir University of Technology, Tehran, Iran
  • Mechanical Engineering Department, Chabahar Maritime and Marine University, Chabahar, Iran
Bibliografia
  • [1] Dhiman, A.K., Chhabra, R.P., & Eswaran, V. (2005). Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Peclet number. International Journal of Heat and Mass Transfer, 48(21-22), 4598-4614.
  • [2] Nitin, S., & Chhabra, R.P. (2005). Non-isothermal flow of a power law fluid past a rectangular obstacle (of aspect ratio 1× 2) in a channel: drag and heat transfer. International Journal of Engineering Science, 43(8-9), 707-720.
  • [3] Dhiman, A.K. (2009). Heat transfer to power-law Dilatant fluids in a channel with a built-in square cylinder. International Journal of Thermal Sciences, 48(8), 1552-1563.
  • [4] Yoon, D.H., Yang, K.S., & Choi, C.B. (2009). Heat transfer enhancement in channel flow using an inclined square cylinder. Journal of Heat Transfer, 131(7), 074503.
  • [5] Moussaoui, M.A., Jami, M., Mezrhab, A., & Naji, H. (2010). MRT-lattice Boltzmann simulation of forced convection in a plane channel with an inclined square cylinder. International Journal of Thermal Sciences, 49(1), 131-142.
  • [6] Aboueian-Jahromi, J., Nezhad, A.H., & Behzadmehr, A. (2011). Effects of inclination angle on the steady flow and heat transfer of power-law fluids around a heated inclined square cylinder in a plane channel. Journal of Non-Newtonian Fluid Mechanics, 166(23-24), 1406-1414.
  • [7] Dulhani, J.P., Sarkar, S., & Dalal, A. (2014). Effect of angle of incidence on mixed convective wake dynamics and heat transfer past a square cylinder in cross flow at Re = 100. International Journal of Heat and Mass Transfer, 74, 319-332.
  • [8] Morgan, V.T. (1975). The overall convective heat transfer from smooth circular cylinders. In Advances in Heat Transfer (Vol. 11, pp. 199-264). Elsevier.
  • [9] Ahmad, R.A. (1996). Steady-state numerical solution of the Navier-Stokes and energy equations around a horizontal cylinder at moderate Reynolds numbers from 100 to 500. Heat Transfer Engineering, 17(1), 31-81.
  • [10] Zdravkovich, M.M. (1997). Flow Around Circular Cylinders: Fundamentals (Vol. 1). Oxford University Press.
  • [11] Zdravkovich, M.M. (2003). Flow Around Circular Cylinders: Applications (Vol. 2). Oxford University Press. Numerical investigation on the effects of obstruction and side ratio on non-Newtonian … 67
  • [12] Dhiman, A.K., Chhabra, R.P., & Eswaran, V. (2008). Steady flow across a confined square cylinder: Effects of power-law index and blockage ratio. Journal of Non-Newtonian Fluid Mechanics, 148(1-3), 141-150.
  • [13] Gupta, A.K., Sharma, A., Chhabra, R.P., & Eswaran, V. (2003). Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: momentum and heat-transfer characteristics. Industrial & Engineering Chemistry Research, 42(22), 5674-5686.
  • [14] Bouaziz, M., Kessentini, S., & Turki, S. (2010). Numerical prediction of flow and heat transfer of power-law fluids in a plane channel with a built-in heated square cylinder. International Journal of Heat and Mass Transfer, 53(23-24), 5420-5429.
  • [15] Bhatti, M.M., & Lu, D.Q. (2019). Analytical study of the head-on collision process between hydroelastic solitary waves in the presence of a uniform current. Symmetry, 11(3), 333.
  • [16] Bhatti, M.M., & Lu, D.Q. (2018). Head-on collision between two hydroelastic solitary waves in shallow water. Qualitative Theory of Dynamical Systems, 17(1), 103-122.
  • [17] Bhatti, M.M., & Rashidi, M.M. (2016). Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. Journal of Molecular Liquids, 221, 567-573.
  • [18] Bhatti, M., Abbas, T., Rashidi, M., Ali, M., & Yang, Z. (2016). Entropy generation on MHD Eyring-Powell nanofluid through a permeable stretching surface. Entropy, 18(6), 224.
  • [19] Shahid, A., Zhou, Z., Hassan, M., & Bhatti, M.M. (2018). Computational study of magnetized blood flow in the presence of Gyrotactic microorganisms propelled through a permeable capillary in a stretching motion. International Journal for Multiscale Computational Engineering, 16(4), 303-320.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cd02013-42c4-4c6b-a0f8-4249e138dbe9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.