PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and analytical study of steel–PVA hybrid fiber-reinforced mortar containing CaCO3 whiskers subjected to freeze–thaw cycles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In high latitude and altitude areas, cement-based composite is subject to freeze–thaw cycles. The uniaxial compressive properties and microstructure of steel–PVA fiber reinforced cement mortar incorporating CaCO3 whiskers (SPFRC-CW) before and after freeze–thaw cycles were studied in this paper. The relative mass loss (RML), relative ultrasonic pulse velocity (RUPV), and the stress–strain relationship of frost–damaged SPFRC-CW was measured for a study of the durability and mechanical property degradation rules. A damage model was established considering the freeze–thaw cycles and CW volume fraction for SPFRC-CW, which demonstrated decent consistency between theoretical and experimental curves. The microstructure was analyzed using an optical microscope (OM), scanning electron microscope (SEM), vacuum epoxy impregnation (VEI), and mercury intrusion porosimetry (MIP). The results suggest that the physical and mechanical properties of SPFRC-CW decreased with prolonged freeze–thaw cycles. The better frost resistance of SPFRC was related to the improved pore structure because of the presence of CW, as per the results of VEI and MIP.
Rocznik
Strony
art. no. e190, 2022
Opis fizyczny
Bibliogr. 51 poz., fot., rys., wykr.
Twórcy
autor
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
autor
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
autor
  • School of Civil Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
Bibliografia
  • [1] Feo L, Ascione F, Penna R, Lau D, Lamberti M. An experimental investigation on freezing and thawing durability of high performance fiber reinforced concrete (HPFRC). Compos Struct. 2020;234: 111673. https:// doi. org/ 10. 1016/j. comps truct. 2019. 111673.
  • [2] Zeng W, Ding Y, Zhang Y, Dehn F. Effect of steel fiber on the crack permeability evolution and crack surface topography of concrete subjected to freeze-thaw damage. Cem Concr Res. 2020;138:106230. https://doi.org/10.1016/j.cemconres.2020.106230.
  • [3] Shang HS, Song YP. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles. Cem Concr Res. 2006;36(10):1857–64. https://doi.org/10.1016/j.cemconres.2006.05.018.
  • [4] Çavdar A. Investigation of freeze–thaw effects on mechanical properties of fiber reinforced cement mortars. Compos B Eng. 2014;58:463–72. https://doi.org/10.1016/j.compositesb.2013.11.013.
  • [5] Powers TC. Void spacing as basis for producing air-entrained concrete. ACI Journal Proc. 1954;50(9):741–60. https://doi.org/10.14359/11792.
  • [6] Powers TC, Helmuth RA. Theory of volume changes in hardened Portland-cement paste during freezing. Highw Res Board Proc.1953;32:285–97.
  • [7] Yun HD. Effect of accelerated freeze–thaw cycling on mechanical properties of hybrid PVA and PE fiber-reinforced strain-hardening cement-based composites (SHCCs). Compos B Eng. 2013;52:11–20. https://doi.org/10.1016/j.compositesb.2013.03.021.
  • [8] Özbay E, Karahan O, Lachemi M, Hossain KM, Atis CD. Dual effectiveness of freezing–thawing and sulfate attack on high-volume slag-incorporated ECC. Compos B Eng. 2013;45(1):1384–90. https://doi.org/10.1016/j.compositesb.2012.07.038.
  • [9] Al Rikabi FT, Sargand SM, Khoury I, Hussein HH. Material properties of synthetic fiber–reinforced concrete under freeze-thaw conditions. J Mater Civ Eng. 2018;30(6):04018090. https://doi.org/10.1061/(asce)mt.1943-5533.0002297.
  • [10] Alsaif A, Bernal SA, Guadagnini M, Pilakoutas K. Freeze-thaw resistance of steel fibre reinforced rubberised concrete. Constr Build Mater. 2019;195:450–8. https:// doi. org/ 10. 1016/j. conbuildmat.2018.11.103.
  • [11] Aboutair W, Chaid R, Perrot A. Impact of the nature of fibers on the physicomechanical behavior and durability of cement matrices. Irani J Sci Technol Transac Civil Eng. 2021. https://doi.org/10.1007/s40996-021-00596-w.
  • [12] Cui Y, Chen Y, Cen G, Peng G. Comparative study on the effect of organic and inorganic fiber on the anti-wheel impact performance of airport pavement concrete under freeze-thaw environment. Constr Build Mater. 2019;211:284–97. https://doi.org/10.1016/j.conbuildmat.2019.03.193.
  • [13] Luo T, Zhang C, Sun C, Zheng X, Ji Y, Yuan X. Experimental investigation on the freeze–thaw resistance of steel fibers reinforced rubber concrete. Materials. 2020;13(5):1260. https://doi.org/10.3390/ma13051260.
  • [14] Meng C, Li W, Cai L, Shi X, Jiang C. Experimental research on durability of high-performance synthetic fibers reinforced concrete: Resistance to sulfate attack and freezing-thawing. Constr Build Mater. 2020;262: 120055. https://doi.org/10.1016/j.conbuildmat.2020.120055.
  • [15] Yuan Y, Zhao R, Li R, Wang Y, Cheng Z, Li F, Ma ZJ. Frost resistance of fiber-reinforced blended slag and Class F fly ashbased geopolymer concrete under the coupling effect of freeze-thaw cycling and axial compressive loading. Constr Build Mater. 2020;250: 118831. https://doi.org/10.1016/j.conbuildmat.2020.118831.
  • [16] Xie C, Cao M, Yin H, Guan J, Wang L. Effects of freeze-thaw damage on fracture properties and microstructure of hybrid fibers reinforced cementitious composites containing calcium carbonate whisker. Constr Build Mater. 2021;300: 123872. https://doi.org/10.1016/j.conbuildmat.2021.123872.
  • [17] Zhang P, Li Q, Chen Y, Shi Y, Ling YF. Durability of steel fiber-reinforced concrete containing SiO 2 nano-particles. Materials. 2019;12(13):2184. https://doi.org/10.3390/ma12132184.
  • [18] Zhang P, Li QF, Wang J, Shi Y, Ling YF. Effect of PVA fiber on durability of cementitious composite containing nano-SiO2 .Nanotechnol Rev. 2019;8(1):116–27. https:// doi. org/ 10. 1515/ntrev-2019-0011.
  • [19] Salemi N, Behfarnia K. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Constr Build Mater. 2013;48:934–41. https://doi.org/10.1016/j.conbuildmat.2013.07.037.
  • [20] Rossi P, Tailhan JL. Numerical modeling of the cracking behavior of a steel fiber-reinforced concrete beam on grade. Struct Concr. 2017;18(4):571–6. https://doi.org/10.1002/suco.201600002.
  • [21] Cao M, Liu Z, Xie C. Effect of steel-PVA hybrid fibers on compressive behavior of CaCO3 whiskers reinforced cement mortar. J Build Eng. 2020;31: 101314. https://doi.org/10.1016/j.jobe.2020.101314.
  • [22] Guo Z. Testing basis and constitutive relationship of strength and deformation of concrete. Beijing: Tsinghua University Press; 1997. (in Chinese).
  • [23] Sun L, Hao Q, Zhao J, Wu D, Yang F. Stress strain behavior of hybrid steel-PVA fiber reinforced cementitious composites under uniaxial compression. Constr Build Mater. 2018;188:349–60. https://doi.org/10.1016/j.conbuildmat.2018.08.128.
  • [24] Ibrahim SM, Almusallam TH, Al-Salloum YA, Abadel AA, Abbas H. Strain rate dependent behavior and modeling for compression response of hybrid fiber reinforced concrete. Latin Am J Solids Struct. 2016;13:1695–715. https://doi.org/10.1590/1679-78252717.
  • [25] Alwesabi EA, Bakar BA, Alshaikh IM, Abadel AA, Alghamdi H, Wasim M. An experimental study of compressive toughness of steel-polypropylene hybrid fibre-reinforced concrete. Structures. 2022;37:379–88. https://doi.org/10.1016/j.istruc.2022.01.025.
  • [26] Wu J, Jing X, Wang Z. Uni-axial compressive stress-strain relations of recycled coarse aggregate concrete after freezing and thawing cycles. Constr Build Mater. 2017;134:210–9. https://doi.org/10.1016/j.conbuildmat.2016.12.142.
  • [27] Wang J, Niu D, He H. Frost durability and stress–strain relationship of lining shotcrete in cold environment. Constr Build Mater. 2019;198:58–69. https://doi.org/10.1016/j.conbuildmat.2018.11.264.
  • [28] Long G, Liu H, Ma K, Xie Y. Uniaxial compression damage constitutive model of concrete subjected to freezing and thawing. J Cent South Univ (Sci Technol). 2018;8:1884–92 (in Chinese).
  • [29] Dong F, Wang H, Yu J, Liu K, Guo Z, Duan X, Qiong X. Effect of freeze–thaw cycling on mechanical properties of polyethylene fiber and steel fiber reinforced concrete. Constr Build Mater. 2021;295: 123427. https://doi.org/10.1016/j.conbuildmat.2021.123427.
  • [30] Yun HD, Rokugo K. Freeze-thaw influence on the flexural properties of ductile fiber-reinforced cementitious composites (DFRCCs) for durable infrastructures. Cold Reg Sci Technol. 2012;78:82–8. https://doi.org/10.1016/j.coldregions.2012.02.002.
  • [31] Xie C, Cao M, Si W, Khan M. Experimental evaluation on fiber distribution characteristics and mechanical properties of calcium carbonate whisker modified hybrid fibers reinforced cementitious composites. Constr Build Mater. 2020;265: 120292. https://doi.org/10.1016/j.conbuildmat.2020.120292.
  • [32] GB\T 50081. Standard for test methods of concrete physical and mechanical properties. Beijing: China Architecture and Building Press; 2019.
  • [33] Okamura H, Ouchi M. Self-compacting concrete. J Adv Concr Technol. 2003;1(1):5–15. https://doi.org/10.3151/jact.1.5.
  • [34] Li L. (2019). Evolutionary and micro mechanisms of multi-scale fiber reinforced cementitious composites after high temperature exposure. (Doctor Thesis) Dalian University of Technology, Dalian, Liaoning. (in Chinese).
  • [35] ASTM C666\C666M. Standard test method for resistance of concrete to rapid freezing and thawing. Am Soc Testing Mater West Conshohocken, PA. 2015. https://doi.org/10.1520/c0666_c0666m-15.
  • [36] Liu Z, Cao M, Xie C. The mechanical properties of mortar blended with steel-PVA hybrid fibers and CaCO 3 whiskers under freeze/thaw cycles condition. Arab J Sci Eng. 2022. https://doi.org/10.1007/s13369-022-06917-z.
  • [37] ASTM C469. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. Am Soc Testing Mater West Conshohocken, PA. 2022. https://doi.org/10.1520/c0469_c0469m-22.
  • [38] Niu D, Jiang L, Bai M, Miao Y. Study of the performance of steel fiber reinforced concrete to water and salt freezing condition. Mater Des. 2013;44:267–73. https://doi.org/10.1016/j.matdes.2012.07.074.
  • [39] Ríos JD, Leiva C, Ariza MP, Seitl S, Cifuentes H. Analysis of the tensile fracture properties of ultra-high-strength fiber-reinforced concrete with different types of steel fibers by X-ray tomography. Mater Des. 2019;165: 107582. https://doi.org/10.1016/j.matdes.2019.107582.
  • [40] Cao M, Wei J, Wang L. Serviceability and reinforcement of low content whisker in portland cement. J Wuhan Univ Technol-Mater Sci Ed. 2011;26(4):749–53. https://doi.org/10.1007/s11595-011-0305-2.
  • [41] Cao M, Zhang C, Lv H, Xu L. Characterization of mechanical behavior and mechanism of calcium carbonate whisker-reinforced cement mortar. Constr Build Mater. 2014;66:89–97. https://doi.org/10.1016/j.conbuildmat.2014.05.059.
  • [42] Zhang W, Pi Y, Kong W, Zhang Y, Wu P, Zeng W, Yang F. Influence of damage degree on the degradation of concrete under freezing-thawing cycles. Constr Build Mater. 2020;260: 119903. https://doi.org/10.1016/j.conbuildmat.2020.119903.
  • [43] Cao M, Zhang C, Li Y, Wei J. Using calcium carbonate whisker in hybrid fiber-reinforced cementitious composites. J Mater Civ Eng. 2015;27(4):04014139. https:// doi. org/ 10. 1061/ (asce) mt.1943-5533.0001041.
  • [44] Wen Z, Zai Z, Peng L, Yun Z, Chun Z, Wei S. Uni-axial tensile and compressive stress-strain behavior of multi-scale fiber-reinforced ultra-high-performance concrete. J Chin Ceram Soc. 2020;48(8):13 (in Chinese).
  • [45] Dan G, Han Li. Compressive stress-strain relationship of fiber and nanosized materials reinforced concrete after exposure to high temperature. Chin Civil Eng J. 2015;48(10):10–20 (in Chinese).
  • [46] Abadel A, Abbas H, Almusallam T, Al-Salloum Y, Siddiqui N. Mechanical properties of hybrid fibre-reinforced concrete–analytical modelling and experimental behaviour. Mag Concr Res. 2016;68(16):823–43. https://doi.org/10.1680/jmacr.15.00276.
  • [47] Mazars J, Pijaudier-Cabot G. Continuum damage theory—application to concrete. J Eng Mech. 1989;115(2):345–65. https://doi.org/10.1061/(asce)0733-9399(1989)115:2(345).
  • [48] Dong S, Han B, Yu X, Ou J. Constitutive model and reinforcing mechanisms of uniaxial compressive property for reactive powder concrete with super-fine stainless wire. Compos B Eng. 2019;166:298–309. https://doi.org/10.1016/j.compositesb.2018.12.015.
  • [49] Ning XL, Ding YN. Effect of steel fiber on the damage constitutive model of concrete under uniaxial compression. J Build Mater. 2015;18(2):214–20 (in Chinese).
  • [50] Lemaitre J. How to use damage mechanics. Nucl Eng Des. 1984;80(2):233–45. https:// doi. org/ 10. 1016/ 0029- 5493(84)90169-9.
  • [51] Shen Y, Wang Y, Wei X, Jia H, Yan R. Investigation on mesodebonding process of the sandstone–concrete interface induced by freeze–thaw cycles using NMR technology. Constr Build Mater. 2020;252: 118962. https://doi.org/10.1016/j.conbuildmat.2020.118962.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ccc5979-e74c-4a11-870a-dd9d81274f00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.