PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of heat transfer phenomena for two different cryopreservation methods : slow freezing and vitrification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the research is to prepare a mathematical and numerical model for the phenomenon of heat transfer during cryopreservation. In the paper, two popular methods, slow freezing and vitrification, are compared. Furthermore, the basic model of thermal processes is supplemented by the phenomenon of phase transitions. To determine the temperature distribution during cryopreservation processes, one uses the heat transfer equation proposed by Pennes. An integral part of the energy equation is the substitute thermal capacity (STC) performed according to the concept named one domain method (fixed domain method), The numerical model is developed using the finite difference method (FDM) connected with directed interval arithmetic. The final part of the article contains the results of numerical simulations.
Rocznik
Strony
57--69
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Department of Computational Mechanics and Engineering, Silesian University of Technology Gliwice, Poland
  • Department of Computational Mechanics and Engineering, Silesian University of Technology Gliwice, Poland
Bibliografia
  • [1] Jang, T.H., Park, S.C., Yang, J.H., Kim, J.Y., Seok, J.H., Park, U.S., Choi, C.W., Lee, S.R., & Han, J. (2017). Cryopreservation and its clinical applications. Integrative Medicine Research, 6(1), 12-18. DOI: 10.1016/j.imr.2016.12.001.
  • [2] Jungare, K.A., Radha, R., & Sreekanth, D. (2022). Cryopreservation of biological samples – A short review. Materials Today: Proceedings, 51, 1637-1641. DOI: 10.1016/j.matpr.2021.11.203.
  • [3] Xu, F., Moon, S., Zhang, X., Shao, L., Song, Y.S., & Demirci, U. (2010). Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1912), 561-583. DOI: 10.1098/rsta.2009.0248.
  • [4] Fourier, J.B.J. (1882). Théorie analytique de la chaleur. Firmin Didot.
  • [5] Mochnacki, B., & Majchrzak, E. (2017). Numerical model of thermal interactions between cylindrical cryoprobe and biological tissue using the dual-phase lag equation. International Journal of Heat and Mass Transfer, 108, 1-10. DOI: 10.1016/j.ijheatmasstransfer.2016.11.103.
  • [6] Popczyk, O., & Dziatkiewicz, G. (2022). Kansa method for solving initial-value problem of hyperbolic heat conduction in nonhomogeneous medium. International Journal of Heat and Mass Transfer, 183, 122088. DOI: 10.1016/j.ijheatmasstransfer.2021.122088.
  • [7] Piasecka-Belkhayat, A., & Skorupa, A. (2022). Application of interval arithmetic in numerical modeling of cryopreservation process during cryoprotectant loading to microchamber. Numerical Heat Transfer, Part A: Applications, 1-19. DOI: 10.1080/10407782.2022.2105078.
  • [8] Pennes, H.H. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1(2), 93-122.
  • [9] Ahmadikia, H., & Moradi, A. (2012). Non-Fourier phase change heat transfer in biological tissues during solidification. Heat and Mass Transfer, 48(9), 1559-1568. DOI: 10.1007/s00231-012-1002-1.
  • [10] Ge, M.Y., Shu, C., Yang, W.M., & Chua, K.J. (2017). Incorporating an immersed boundary method to study thermal effects of vascular systems during tissue cryo-freezing. Journal of Thermal Biology, 64, 92-99. DOI: 10.1016/j.jtherbio.2017.01.006.
  • [11] Majchrzak, E., Mochnacki, B., Dziewoński, M., & Jasiński, M. (2011). Numerical modelling of hyperthermia and hypothermia processes. Advanced Materials Research, 268-270, 257-262. DOI: 10.4028/www.scientific.net/AMR.268-270.257.
  • [12] Singh, S., & Kumar, S. (2015). freezing of biological tissues during cryosurgery using hyperbolic heat conduction model. Mathematical Modelling and Analysis, 20(4), 443-456. DOI: 10.3846/13926292.2015.1064486.
  • [13] Wang, Z., Zhao, G., Wang, T., Yu, Q., Su, M., & He, X. (2015). Three-dimensional numerical simulation of the effects of fractal vascular trees on tissue temperature and intracelluar ice formation during combined cancer therapy of cryosurgery and hyperthermia. Applied Thermal Engineering, 90, 296-304. DOI: 10.1016/j.applthermaleng.2015.06.103.
  • [14] Deng, Z.-S., & Liu, J. (2005). Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties. Cryobiology, 50(2), 183-192. DOI: 10.1016/j.cryobiol.2004.12.007.
  • [15] Skorupa, A., & Piasecka-Belkhayat, A. (2020). Numerical modeling of heat and mass transfer during cryopreservation using interval analysis. Applied Sciences, 11(1), 302. DOI: 10.3390/app11010302.
  • [16] Moore, R.E. (1966). Interval Analysis. Printice-Hall.
  • [17] Wang, L., Pegg, D.E., Lorrison, J., Vaughan, D., & Rooney, P. (2007). Further work on the cryopreservation of articular cartilage with particular reference to the liquidus tracking (LT) method. Cryobiology, 55(2), 138-147. DOI: 10.1016/j.cryobiol.2007.06.005.
  • [18] Yu, X., Zhang, S., & Chen, G. (2019). Modeling the addition/removal of dimethyl sulfoxide into/from articular cartilage treated with the liquidus-tracking method. International Journal of Heat and Mass Transfer, 141, 719-730. DOI: 10.1016/j.ijheatmasstransfer.2019.07.032.
  • [19] Pegg, D.E., Wusteman, M.C., & Wang, L. (2006). Cryopreservation of articular cartilage. Part 1: Conventional cryopreservation methods. Cryobiology, 52(3), 335-346. DOI: 10.1016/j.cryobiol.2006.01.005.
  • [20] Taylor, M.J., & Hunt, C.J. (1985). A new preservation solution for storage of corneas at low temperatures. Current Eye Research, 4(9), 963-973. DOI: 10.3109/02713689509000003.
  • [21] Pegg, D.E., Wang, L., & Vaughan, D. (2006). Cryopreservation of articular cartilage. Part 3: The liquidus-tracking method. Cryobiology, 52(3), 360-368. DOI: 10.1016/j.cryobiol.2006.01.004.
  • [22] Mazur, P. (1963). Studies on rapidly frozen suspensions of yeast cells by differentia thermal analysis and conductometry. Biophysical Journal, 3(4), 323-353. DOI: 10.1016/S0006-3495(63)86824-1.
  • [23] Shi, M., Feng, S., Zhang, X., Ji, C., Xu, F., & Lu, T.J. (2018). Droplet based vitrification for cel aggregates: Numerical analysis. Journal of the Mechanical Behavior of Biomedical Materials, 82, 383-393. DOI: 10.1016/j.jmbbm.2018.03.026.
  • [24] Zhou, X., Liu, Z., Liang, X.M., Shu, Z., Du, P., & Gao, D. (2013). Theoretical investigations of a novel microfluidic cooling/warming system for cell vitrification cryopreservation. International Journal of Heat and Mass Transfer, 65, 381-388. DOI: 10.1016/j.ijheatmasstransfer.2013.06.022.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ccc3261-a206-41da-9544-e8b8e380756e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.