PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microbiological Activity of Soil Under the Influence of Post-Harvest Siderates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of research on the activation of the microflora by using post-harvest green manure crops were presented. As a result of the conducted studies, the positive effect of sidereal crops of Raphanus sativum and Phacelia tanacetifolia on activity increase of microflora in black soil with little humus was revealed. Application of post-harvest siderates increased the number of non-sporous species of bacteria and actinomycetales, contributed to improvement of soil environment under the influence of siderates, which had a positive effect on creating more comfortable conditions for growing potatoes. The usage of green fertilizers had a positive influence on microbiology activity of soil.
Rocznik
Strony
122--127
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
autor
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
autor
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
autor
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Separate Structural Subdivision, Okhtyrka Professional College of Sumy National Agrarian University, Sumy region, Okhtyrka, Sumska St., 46, 42700, Ukraine
Bibliografia
  • 1. Araujo A.S., Melo W.J. 2010. Soil microbial biomass in organic farming system. Ciencia Rural, 40, 2419–2426. https://dx.doi.org/10.1590/S0103-84782010001100029
  • 2. Armengot L., Blanco-Moreno J.M., Bàrberi P., Bocci G., Carlesi S., Aendekerk R., Berner A., Celette F., Grosse M., Huiting H., Kranzler A., Luik A., Mäder P., Peigné J., Stoll E., Delfosse P., Sukkel W., Surböck A., Westaway S., Sans F.X. 2016. Tillage as a driver of change in weed communities: a functional perspective. Agriculture, Ecosystems & Environment, 222, 276–285. https://dx.doi.org/10.1016/j.agee.02.021
  • 3. Barczak B., Łopuszniak W., Moskal M. 2019. Yield of spring barley in conditions of sulphur fertilization. Journal of Central European Agriculture, 20(2), 636–646. https://dx.doi.org/10.5513/JCEA01/20.2.2115
  • 4. Bater J.E. 1996. Micro-and Macro-arthropods. Methods for the examination of organismal diversity in soils and sediments. Cab International, United Kingdom, 307.
  • 5. Bulyhin S., Tonkha O. 2018. Biological evaluation of the rationality of soil usage in agriculture. Agricultural Science and Practice, 5(1), 23–29. https://dx.doi.org/10.15407/agrisp5.01.023
  • 6. Caldiz D.O., de Lasa C., Bisio P.E. 2016. Management of Grass and Broadleaf Weeds in Processing Potatoes (Solanum tuberosum L.) with Clomazone, in the Argentinian Pampas. American Journal of Plant Sciences, 7(16), 2339–2348. https://dx.doi.org/10.4236/ajps.2016.716205
  • 7. Cerbari V., Leah T. 2021. Preventative Restoration of Ordinary Chernozem Before Implementing Zero Tillage. In: Dent D., Boincean B. (eds) Regenerative Agriculture. Springer, Cham. https://dx.doi.org/10.1007/978-3-030-72224-1_15
  • 8. Cerdà A., Rodrigo-Comino J., Yakupoğlu T., Dindaroğlu T., Terol E., Mora-Navarro G., Arabameri A., Radziemska M., Novara A., Kavian A., Vaverková M.D., Abd-Elmabod S.K., Hammad H.M., Daliakopoulos I.N. 2020. Tillage Versus NoTillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water, 12(6), 1539. https://dx.doi.org/10.3390/w12061539
  • 9. Chețan F., Chețan C., Bogdan I., Pop A.I., Moraru P.I., Rusu T. 2021. The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions. Land, 10(2), 200. https://dx.doi.org/10.3390/land10020200
  • 10. Coulson S.J., Fjellberg A., Melekhina E.N., Taskaeva A.A., Lebedeva N.V., Belkina O.A., Seniczak S., Seniczak A., Gwiazdowicz D.J. 2015. Microarthropod communities of industrially disturbed or imported soils in the High Arctic; the abandoned coal mining town of Pyramiden, Svalbard. Biol. Conserv, 24, 1671–1690. https://dx.doi.org/10.1007/s10531-015-0885-9
  • 11. Fließbach A., Oberholzer H.R., Gunst L., Mäder P. 2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems & Environment, 118(1–4), 273–284. https://dx.doi.org/10.1016/j.agee.2006.05.022
  • 12. Grodzinskiy A.M. 1990. The sanitary role of cruciferous crops in crop rotation. Allelopathy and plant productivity. Collection of scientific papers, Naukova dumka, 8–14. https://search.rsl.ru/ru/record/01001522046. (in Russian).
  • 13. Grodzinskіy A.M., Kostroma E.Yu., Shrol T.S. 1990. Direct methods of biotesting soil and metabolites of microorganisms. Allelopathy and plant productivity. Scientific thought, 121–124. https://scholar.google.com.ua/scholar?hl=uk&as_sdt=0,5&cluster=16097730043601720964. (in Russian)
  • 14. Hryhoriv Y., Butenko A., Nechyporenko V., Lyshenko M., Ustik T., Zubko V., Makarenko N., Mushtai V. 2021. Economic efficiency of Camelina sativa growing with nutrition optimization under conditions of Precarpathians of Ukraine. Agraarteadus, 32(2), 232–238. https://dx.doi.org/10.15159/jas.21.33
  • 15. Iutinskaya G.O. 2006. Soil microbiology: Textbook, Aristei, 284. (in Russian).
  • 16. Karbivska U., Kurgak V., Gamayunova V., Butenko A., Malynka L., Kovalenko I., Onychko V., Masyk I., Chyrva A., Zakharchenko E., Tkachenko O., Pshychenko O. 2020. Productivity and quality of diverse ripe pasture grass fodder depends on the method of soil cultivation. Acta Agrobotanica, 73(3), 1–11. https://dx.doi.org/10.5586/aa.7334
  • 17. Karbivska U., Asanishvili N., Butenko A., Rozhko V., Karpenko O., Sykalo O., Chernega T., Masyk I., Chyrva A., Kustovska A. 2022. Changes in Agrochemical Parameters of Sod-Podzolic Soil Depending on the Productivity of Cereal Grasses of Different Ripeness and Methods of Tillage in the Carpathian Region. Journal of Ecological Engineering, 23(1), 55–63. https://dx.doi.org/10.12911/22998993/143863
  • 18. Karpenko O.Y., Rozhko V.M., Butenko A.O., Lychuk A.I., Davydenko G.A., Tymchuk D.S. 2020а. The activity of the microbial groups of maize rootzone in different crop rotations. Ukrainian Journal of Ecology, 10(2), 137–140. https://dx.doi.org/10.15421/2020_76
  • 19. Karpenko O.Y., Rozhko V .M., Butenko A.O., Masyk I.M., Malynka L.V., Didur I.M., Vereshchahin I.V., Chyrva A.S., Berdin S.I. 2019. Post-harvest siderates impact on the weed littering of maize, 9(3), 300–303. https://dx.doi.org/10.15421/2019_745
  • 20. Karpenko O.Y., Rozhko V .M., Butenko A.O., Samkova O.P., Lychuk A.I., Matviienko I.S., Masyk I.M., Sobran I.V ., Kankash H.D. 2020b. Influence of agricultural systems and measures of basic tillage on the number of microorganisms in the soil under winter wheat crops of the Right-bank forest-steppe of Ukraine. Ukrainian Journal of Ecology, 10(5), 76–80. https://dx.doi.org/10.15421/2020_209
  • 21. Kravchenko Y.S. 2020. Ukrainian Chernozem Fertility Reproduction under Soil Conservation Agriculture. Agrobiology, 1, 67–79. https://dx.doi.org/10.33245/2310-9270-2020-157-1-67-79
  • 22. Kvitko M., Getman N., Butenko A., Demydas G., Moisiienko V., Stotska S., Burko L. Onychko V. 2021. Factors of increasing alfalfa yield capacity under conditions of the forest–steppe. Agraarteadus, Journal of Agricultural Science, 1(32), 59–66. https://dx.doi.org/10.15159/jas.21.10
  • 23. Kwiatkowski C.A., Harasim E., Feledyn-Szewczyk B., Antonkiewicz J. 2020. Enzymatic Activity of Loess Soil in Organic and Conventional Farming Systems. Agriculture, 10(4), 135. https://dx.doi.org/10.3390/agriculture10040135
  • 24. Litvinov D.V., Butenko A.O., Onychko V .I., Onychko T.O., Malynka L.V., Masyk I.M., Bondarieva L.M., Ihnatieva O.L. 2019. Parameters of biological circulation of phytomass and nutritional elements in crop rotations. Ukrainian Journal of Ecology, 9(3), 92–98. https://dx.doi.org/10.15421/2019_714
  • 25. Lopushniak V.I., Hrytsuliak H.M., Kotsiubynsky A.O., Lopushniak H.S. 2021. Forecasting the productivity of the agrophytocenoses of the miscanthus giganteus for the fertilization based on the wastewater sedimentation using artificial neural networks. Ecological Engineering and Environmental Technologythis link is disabled, 22(3), 11–19. https://dx.doi.org/10.12912/27197050/134867
  • 26. Mishchenko Yu.G., Zakharchenko E.A., Berdin S.I., Kharchenko O.V., Ermantraut E.R., Masyk I.M., Tokman V .S. 2019. Herbological monitoring of efficiency of tillage practice and green manure in potato agrocenosis. Ukrainian Journal of Ecology, 9(1), 210–219. https://www.ujecology.com/articles/herbologicalmonitoring-of-efficiency-of-tillage-practice-andgreen-manure-in-potato-agrocenosis.pdf
  • 27. Paz-Ferreiro J., Fu S. 2016. Biological Indices for Soil Quality Evaluation: Perspectives and Limitations. Land Degradation & Development, 27, 14– 25. https://dx.doi.org/10.1002/LDR.2262
  • 28. Rieznik S., Havva D., Butenko A., Novosad K. 2021. Biological activity of chernozems typical of different farming practices. Agraarteadus, 32(2), 307–313. https://dx.doi.org/10.15159/jas.21.34
  • 29. Santín-Montanyá M.I., Martín-Lammerding D., Zambrana E., Tenorio J.L. 2016. Management of weed emergence and weed seed bank in response to different tillage, cropping systems and selected soil properties. Soil and Tillage Research, 161, 38–46. https://dx.doi.org/10.1016/j.still.2016.03.007
  • 30. Scherner A., Melander B., Kudsk P. 2016. Vertical distribution and composition of weed seeds within the plough layer after eleven years of contrasting crop rotation and tillage schemes. Soil and Tillage Research. Elsevier BV, 3(161), 135. https://dx.doi.10.1016/j.still.2016.04.005
  • 31. Segi Y. 1983. Methods of soil microbiology. Kolos, 205. https://www.twirpx.com/file/770757/
  • 32. Steinweg J.M., Dukes J.S., Wallenstein M.D. 2012. Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol, Biochem., 55, 85–92. https://dx.doi.org/10.1016/j.soilbio.2012.06.015
  • 33. Svirskene A. 2003. Microbiological and biochemical parameters in assessing the anthropogenic impact on the soil. Soil Science, 2, 202–210.
  • 34. Tepper E.Z., Shilnikova V .K., Pereverzeva G.I. 1979. Workshop on Microbiology. Kolos, 216. https://www.twirpx.com/file/35648/ (in Russian).
  • 35. Tsyhanskyi V .I., Didur I.M., Tsyhanska O.I., Malynka L.V., Butenko A.O., Masik I.M., Klochkova T.I. 2019. Effect of the cultivation technology elements on the activation of plant microbe symbiosis and the nitrogen transformation processes in alfalfa agrocoenoses. Modern Phytomorphology, 13, 30–34. https://dx.doi.org/10.5281/zenodo.20190107
  • 36. Van Der Heijden M.G.A., Bardgett R.D., Van Straalen N.M. 2008. The unseen majority – Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett, 11, 296–310. https://dx.doi.org/10.1111/j.1461-0248.2007.01139.x
  • 37. Woźniak A. 2019. Chemical Properties and Enzyme Activity of Soil as Affected by Tillage System and Previous Crop. Agriculture, 9(12), 262. https://dx.doi.org/10.3390/agriculture9120262
  • 38. Yakupoglu T., Gundogan R., Dindaroglu T., Kusvuran K., Gokmen V., Rodrigo-Comino J. Gyasi-Agyei Y., Cerdà A. 2021. Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments. Sustainability, 13, 789. https://dx.doi.org/10.3390/su13020789
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cc3bc10-3825-4662-bfeb-e1d1fbe06c6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.