Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using the Fenchel-Young duality we derive a new critical point theorem. We illustrate our results with solvability for certain discrete BVP. Multiple solutions are also considered.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
725--732
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Technical University of Lodz Institute of Mathematics, Wolczanska 215, 90-924 Lodz, Poland
autor
- Technical University of Lodz Centre of Mathematics and Physics Al. Politechniki 11, 90-924 Lodz, Poland
Bibliografia
- [1] R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992.
- [2] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
- [3] M. Galewski, On the dual variational method for a system of nonlinear equations with a
- parameter, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18 (2011), 699–704.
- [4] M. Galewski, A. Nowakowski, D. O’Regan, A. Orpel, The dual variational method for n-th order ODEs with multipoint boundary conditions, Appl. Anal., doi: 10.1080/00036811.2013.801459.
- [5] A. Iannizzotto, V. Radulescu, Positive homoclinic solutions for the discrete p-Laplacian with a coercive potential, Differential Integral Equations 27 (2014), 35–44.
- [6] A. Kristály, V. Radulescu, C. Varga, Variational Principles in Mathematical Physics, Geometry and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics, No. 136, Cambridge University Press, Cambridge, 2010.
- [7] N. Marcu, G. Molica Bisci, Existence and multiplicity of solutions for nonlinear discrete inclusions, Electron. J. Differential Equations 2012 (2012) 192, 13 pp.
- [8] A. Nowakowski, A new variational principle and duality for periodic solutions of Hamilton’s Equations, J. Differential Equations 97 (1992) 1, 174–188.
- [9] R. Precup, On a bounded critical point theorem of Schechter, Stud. Univ. Babes-Bolyai Math. 58 (2013), 87–95.
- [10] C. Serban, Existence of solutions for discrete p-Laplacian with potential boundary conditions, J. Difference Equ. Appl. 19 (2013), 527–537.
- [11] M. Struwe, Variational Methods, Springer, Berlin, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cc3694c-b989-49b0-99b8-c39b74e2867f