PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of color conductive inks by introducing SWCNT/Ag and various dyes into polymeric solutions for potential applications in disposable, cheap, and flexible electronics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The multifaceted field of conductive inks is moving from a preliminary to an advanced stage. In this study, cellulose filter paper was used as a popular, renewable, and inexpensive material, with very interesting flexible characteristics. The novelty of this work was to use a single-walled carbon nanotube/silver (SWCNT/Ag) nanopowder in a color polymeric matrix for preparing highly conductive color inks resistant to washing. An investigation comparing three inks colored separately with different anionic and cationic dyes was performed to examine possible changes in electrical resistivity of the papers. The results obtained from FT-IR spectroscopy showed the presence of carboxylic groups in acid-treated SWCNTs and revealed Ag-containing bonds. XRD results confirmed functionalization of SWCNTs and obtaining SWCNT/Ag powder with Ag nanoparticles (NPs). Thermal stability and degradation of specimens were studied using TGA analysis to measure the percentage of Ag NPs in the SWCNTs network. The TEM micrographs were consistent with the Scherrer results. Finally, different color inks were synthesized with/without SWCNT/Ag nanopowder, and the four-point probe technique was utilized to measure the electrical resistivity of each colored paper. Consequently, preparation of color conductive inks by using ultra-narrow SWCNTs was done successfully.
Wydawca
Rocznik
Strony
675--683
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Physics, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
autor
  • Department of Physics, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
  • Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
Bibliografia
  • [1] FALINSKI M.M., PLATA D.L., CHOPRA S.S., THEIS T.L., GILBERTSON L.M., ZIMMERMAN J.B., Nature Nanotechnol., 13 (2018), 708.
  • [2] JAFARPOUR S.M., KINI M., SCHULZ S.E., HERMANN S., Microelectron. Eng., 167 (2017), 95.
  • [3] SANCHEZ-ROMAGUERA V., WÜNSCHER S., TURKI B.M., ABBEL R., BARBOSA S., TATE D.J., OYEKA D., BATCHELOR J.C., PARKER E.A., SCHUBERT U.S., YEATES S.G., J. Mater. Chem. C, 3 (2015), 2132.
  • [4] KIM Y., KIM H.-S., YUN Y.S., BAK H., JIN H.-J., J. Nanosci. Nanotechnol., 10 (2010), 3571.
  • [5] CINTI S., MOSCONE D., ARDUINI F., 2017 IEEE East-West Design & Test Symposium (EWDTS), 2017, p. 1.
  • [6] KNAPP C.E., CHEMIN J.-B., DOUGLAS S.P., ONDO D.A., GUILLOT J., CHOQUET P., BOSCHER N.D., Adv.Mater. Technol., 3 (2018), 1700326.
  • [7] KARTHIK P., SINGH S.P., RSC Adv., 5 (2015), 63985.
  • [8] MOCHIZUKI T., TAKIGAMI Y., KONDO T., OKUZAKIH., J. Appl. Polym. Sci., 135 (2018), 45972.
  • [9] VERMA P., SAINI P., MALIK R.S., CHOUDHARY V.,Carbon, 89 (2015), 308.
  • [10] OSORIO A., SILVEIRA I., BUENO V., BERGMANN C., Appl. Surface Sci., 255 (2008), 2485.
  • [11] HUANG Y.Y., TERENTJEV E.M., Polymers, 4 (2012), 275.
  • [12] DUAN W.H., WANG Q., COLLINS F., Chem. Sci., 2 (2011), 1407.
  • [13] CHAN B.-D., HSIEH K.-H., YANG S.-Y., Microelectron. Eng., 86 (2009), 586.
  • [14] PEKKANEN V., MÄNTYSALO M., KAIJA K., MANSIKKAMÄKI P., KUNNARI E., LAINE K., NIITTYNEN J., KOSKINEN S., HALONEN E., CAGLAR U., Microelectron. Eng., 87 (2010), 2382.
  • [15] STAUDINGER U., ZYLA G., KRAUSE B., JANKE A., FISCHER D., ESEN C., VOIT B., OSTENDORF A., Microelectron. Eng., 179 (2017), 48.
  • [16] GASPAR C., PASSOJA S., OLKKONEN J., SMOLANDER M., Microelectron. Eng., 149 (2016), 135.
  • [17] CHOI K., YU C., PloS one, 7 (2012), 44977.
  • [18] SHARMA M., SRINIVAS V., MADRAS G., BOSE S., RSC Adv., 6 (2016), 6251.
  • [19] WANG Y., WEI W., ZENG J., LIU X., ZENG X., Microchim. Acta, 160 (2008), 253.
  • [20] NOMURA K.-I., USHIJIMA H., MITSUI R., TAKAHASHI S., NAKAJIMA S.-I., Microelectron. Eng., 123 (2014), 58.
  • [21] LEE S., CHOI D., PIAO H., SON Y., Microelectron. Eng., 163 (2016), 98.
  • [22] ZHU Z., ZHANG H., XIA K., XU Z., Microelectron. Eng., 191 (2018), 72.
  • [23] KARTHIK P.S., SINGH S.P., RSC Adv., 5 (2015), 77760.
  • [24] RAMEZAN ZADEH M.H., SEIFI M., HEKMATARA H., ASKARI M.B., Chinese J. Phys., 55 (2017), 1319.
  • [25] RAMEZAN ZADEH M.H., SEIFI M., ABDOLRAHIMI M., Chinese J. Phys., 56 (2018), 476.
  • [26] RARAVIKAR N.R., SCHADLER L.S., VIJAYARAGHAVAN A., ZHAO Y., WEI B., AJAYAN P.M., Chem.Mater., 17 (2005), 974.
  • [27] KABBANI M.A., TIWARY C.S., AUTRETO P.A., BRUNETTO G., SOM A., KRISHNADAS K.R., OZDEN S., HACKENBERG K.P., GONG Y., GALVAO D.S., VAJTAI R., Nature Commun., 6 (2015), 7291.
  • [28] CHEN G.X., KIM H.S., PARK B.H., YOON J.S., J. Phys. Chem. B, 109 (2005), 22237.
  • [29] HE H., GAO C., Molecules, 15 (2010), 4679.
  • [30] PAJOOTAN E., ARAMI M., Electrochim. Acta, 112 (2013), 505.
  • [31] MOVIA D., CANTO E.D., GIORDANI S., J. Phys. Chem. C, 114 (2010), 18407.
  • [32] LANJE A.S., SHARMA S.J., PODE R.B., J. Chem. Pharm. Res., 2 (2010), 478.
  • [33] DOBRZANSKI L., PAWLYTA M., KRZTON A., LISZKA B., TAI C., KWASNY W., Acta Phys. Polonica A, 118 (2010), 483.
  • [34] RUBIN M., NEWMAN N., CHAN J.S., FU T.C., ROSS J.T., Appl. Phys. Lett., 64 (1994), 64.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3cb7c757-89d2-4207-96c4-1900d6785f25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.