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A method is proposed for calculation of transition matrices of posi-
tive electrical circuits. It is shown that if the transition matrix is pre-
sented as finite series of the Metzler matrix with real distinct eigen-
values then the coefficients of the series are nonnegative function of
time. The method is applied to positive linear electrical circuits.

Stowa kluczowe: positive, linear, electrical circuits, calculation, transition
matrix.

1.Introduction

A dynamical system is called positive if its trajectory starting
from any nonnegative initial state remains forever in the positive
orthant for all nonnegative inputs. An overview of state of the art in
positive theory is given in the monographs [2, 9]. Variety of models
having positive behavior can be found in engineering, especially in
electrical circuits [17], economics, social sciences, biology and
medicine, efc. [2, 9].

The positive electrical circuits have been analyzed in [4-8, 10,
17]. The constructability and observability of standard and positive
electrical circuits has been addressed in [5], the decoupling zeros in
[6] and minimal-phase positive electrical circuits in [7]. A new class
of normal positive linear electrical circuits has been introduced in [8].
Positive fractional linear electrical circuits have been investigated in
[11], positive linear systems with different fractional orders in [12,
13] and positive unstable electrical circuits in [14]. Zeroing of state
variables in descriptor electrical circuits has been addressed in [16]
and the realization problem of positive linear systems in [1].

In this paper a method for computation of transition matrices of
positive linear electrical circuits will be presented and some specific
properties of the coefficients of finite series presenting the transition
matrices will be investigated.

The paper is organized as follows. In section 2 some basic defi-
nitions and theorems concerning matrices and Cayley—Hamilton
theorem are recalled. The computation of the matrix function and
the transition matrix are addressed in section 3. The stability and
computation of the transition matrices of positive linear electrical
circuits are investigated in section 4. Concluding remarks are given
in section 5.

The following notation will be used: ‘R - the set of real num-
bers, R™™ - the set of Nx M real matrices and R" =R™,

RT™ - the set of Nx M matrices with nonnegative entries and
R" =R", M, - the set of Nx N Metzler matrices (real matri-
ces with nonnegative off-diagonal entries), |, -the NxnN identity

matrix, A" denotes the transpose of the matrix A.

2.Preliminaries
The characteristic polynomial of the matrix A € SR™"

Py =detll A - Al=A" +a, ;A" +..+ ad+ay(2.1)

and its minimal polynomial \(AA) are related by [2, 15]

y(n) =2 (22)

where D() is the greatest common divisor of entries of the
adjoint matrix [I A — Al,q . If the eigenvalues A,, A,, ...,
A, of the matrix A are distinct, i.e. A, # ?»j if 1% ],
I, j=1..,n, then D(A) =1and W (1) =(A) [3, 15]

nxn
Consider a matrix AeR with the minimal character-
istic polynomial

W) = (=)™ (=)™ (=A™, (23)

where A, A,, ..., A, are the eigenvalues of the matrix A

r
and ) m=m<n,
i=1
It is assumed that the function f(A) is well-defined on

spectrum &, ={A,,A,,...A, } of the matrix A, i.e.
df ()

[0, 1000 =

} df ™t(n)
e T ) =
( k) d}\,mkA

r=hy =1y

k=1..r

(24)

are finite.
In this case the matrix f (A) is well-defined and it is giv-
en by the Lagrange-Sylvester formula [3, 15]

F(A) =22, F (1) + Z O 4.2y T 00),

(2.5)

where

S BAA-AL) d
i = - - Py (26)
k= DG - AT (A |

and

Y(A)

\Pi(A):W,
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Theorem 2.1. Let

Y(A) =det[IA—f(A]=2"+a, A" +...+ar+a
(2.8)
be the minimal characteristic polynomial of the matrix

f(A). Then the matrix f(A) satisfies its characteristic
equation, i.e.

[f(A]"+a, [f(A]" " +..+a[f(A)]+al, =0.
(2.9)
Proof. Proof is given in [3, 15].

In particular case for f(A)= A we obtain the classical
Cayley—Hamilton theorem.

3.Computation of the transition matrices
Definition 3.1. The matrix A=[a;] e R""is call Metzler

matrix if a; >0 for I J.
The set of Nx N Metzler matrices will be denoted M. To
simplify the notation it is assumed that A; # A ; for 12 j.

Theorem 3.1. Let Ae R™", f (A,t) be a matrix function well-

defined on the spectum &, ={A;,A,,...A } of the matrix
A, t -time and it can be presented in the series form

f(AL) =D a (t)A" (3.1)
k=0
where a, (t) are some coefficients.
Then
n-1
f(AD) =D c (t)A (3.2)
k=0
where
nl 3.3
fo\qt) )\«1 7\41n71 i :Eilg i‘lnfl ( )
Ao(t):f(ixzt) x:z 7‘2:"71,A1(t)=: :2 2:
fO.0) A o AT 1 fo,t) . A"
Ao A
(R U /W) A_1 Ay A
Al R MO, : :
1, . TR0 1 A, A"t

Proof. Using the classical Cayley—Hamilton theorem we can elimi-
nate in (3.1) the matrix A* for kK =n,n+1,... and obtain (3.2).

It is well-known [3, 15] that (3.2) is also satisfied on the spectrum of
the matrix A
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n-1
fu.t)=>c,(A fork=L..n  (34)
i=0

The relations (3.4) can be written in the form

1 A4 A e | | (AL

e (t f (1,1
12 Az C1:() _| @D 45
1 2, A Leat) | LT (Aa0)

Using the well-known the Cramer formula to (3.5) we obtain
(3.3).

The matrix €' is called transition matrix of the linear systems.
Theorem 3.2. If A€ M, has distinct eigenvalues A;, A,, ...,

A, than the coefficients C, (t), k =0,1,..n—1 in the formula

n-1
e => "¢ (A" (3.6)
k=0
satisfy the following conditions:
¢.(0) = 1 fork=0 (37)
700 for k =1...,n-1 '
1 fork=0
de o _ )T (3.8)
dt |, |0 fork=0.2,..,n-1
and
C,(t)>0fort>0and k=01,...,n-1. (3.9)

Proof. The equality (3.6) follows from (3.2) for and are defined by
(3.3). From (3.3) we have

A, (0 A0 O
CO(t)L:o =—(i ) =1and C, (t)|t:0 _A0) =3 =0
for k=01..n-1 (3.10)
since for f(At)=e™, e o =1 k=1...,n,

Ay(0)=A and A, (0) for k =1,...,n—1 has two identical
columns.

d
Note that aem =, for k=1,...,n, and

t=0
dA(t) A0) A
W74 k _2_ —
dck(t)| dt t=0 _ ) A A L fork=1
dt |, A M:%:O fork=0.2,..n-1

A
(3.11)



since A, (0) for k =0,2,...,n —1 has two identical columns.
The condition (3.9) is satisfied since

¢, (t)c, (t,) = W >0 fork=01..,n—1
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m20 for OStS#In& and M<0
dt A, A

1 &
A

In
7*1 _7‘2 1

for 0<t<

(3.19)

and t,,t, € [0’ OO]' (3.12) Therefore, the conditions of Theorem 3.2 are satisfied (see Fig. 3.1).
Example 3.1. Consider the matrix e™ for ! o
0.3
-1 0 £ o5 € 02
eM, (3.13)
1 -2 01
00 5 10 OO 5 10
with the eigenvalues A, = -1, A, =—2. ' '
By Theorem 3.2 we have 0 !
-0.2
= = 0.5
e =c, ()1, +¢ (A (3.14) S o4 2
It will be shown that o5 o5
C(t) >0 for t>0, ¢,(0) =1, lim cy(t)=0 ° 5 o o 5 10
—w

and

Fig. 3.1. Plots of coefficients ¢, (t) and their derivatives

c,(t)=0 for t>0, ¢(0)=1, tIiirgocl(t):o.

Using (3.3) for (3.13) we obtain

Example 3.2. Consider the matrix function "' for A € M with

the eigenvalues A, = -1, A, =2, A, =-3.

At
ex My Note that the matrix A € M, is given by the set of matrices
€ 4 7\‘2 1 At Aot -t -2t
= = T-Ae)=2e —e 0
C, (1) " Y (A" —Ae™) > 1 0 o
x, A=Plo -2 o |P?
0 0 -3 3.20
for t>0 (3.15) (3.20)
and for P & R**® monomial matrix.
Using(3.3) for (3.10) we obtain
(3.21)
1 eklt
1 e}"zt 1 h et 7‘21
c (t)= = (" —eM)=e"-e* >0 L et 2
' 1 A A, —A 2
ot O R PR - (PR S (R
1 }\‘2 al= 1 A 7»21 _(XZ—XI)(KI—XQ My =)A= 1) (7‘3_7‘1)(7‘3_>‘2)_
1A, A
(3.16) L
Note that _ge" —4e +ge’3‘
(3.22)
dc, (t A _ _
0()= 1V (exlt_exzt)zze 2 _ 267t 5 0 for
dt Ay =Ny 1 g, e
t>0 (3.17) L2, e "
1 }\’3 e’ eh,( e).zl e/qt
c,(t)= 7= + + =
and 1 )\.1 7»1 (7»1—%2)(7\-1_7&3) (7‘2_}‘1)(}‘2_7‘3) (}‘3_}‘1)(}‘3_}‘2)
1, K
1oa, R
dc, (t 1 _ _ >
GO _ (e —he")=2e"—e "' >0 for _1. a, L
dt 7\‘ 7\‘ 2 1 28 e +26
27 M
t>0 (3.18) (3.23)

from (3.18) it follows that
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From (3.21) - (3.23) is follows that C,(0)=1, ¢,(0)=0,

C,(0)=0 and c, (t) =0 for t > 0.
Therefore the conditions of Theorem 3.2 are satisfied (see Fig. 3.2).

0.8 0.4 0.4

0.6 0.3 0.3

o)
®
0

o J
0.4 0.2 0.2

02 0.1 0.1

de, (v/dt

0 5 10 o 5 10 ( 5 10
t t t

Fig. 3.2. Plots of coefficients ¢, (t) and their derivatives

4.The stability of positive electrical circuits and computation of
their transition matrices
Consider the linear continuous-time electrical circuit described
by the state equations

X(t) = Ax(t) + Bu(t), (4.1a)
y(t) =Cx(t) + Du(t), (4.1b)
where X(t) e R", u(t) e R™, y(t) € RP are the state, input
and output vectors and Ae R™, BeR™, CeR"",

DeR"™.
Definition 4.1. [2, 10, 17] The electrical circuit (4.1) is called (inter-

X(t)eR] and y=y(t)eR’,
t €[0,+0] forany X, = X(0) € R" and every u(t) € KT,
t €[0,+o0].

Theorem 4.1. [2, 10, 17] The electrical circuit (2.1) is positive if and
only if

nally) positive if

AeM_  BeRT™ CeRP" DeRP™. @42

It is well-known [2, 10, 17] that any linear electrical circuit com-
posed of resistors, coils, capacitors and voltage (current) sources
can be described by the state equations (4.1). Usually as the state

variables X, (t) ,..., X, (t) (the components of the state vector

X(t)) the currents in the coils and voltages on the capacitors are

chosen.

Theorem 4.2. The linear electrical circuit composed of resistors,
coils and voltage sources is positive for any values of the resistanc-
es, inductances and source voltages if the number of coils is less or
equal to the number of its linearly independent meshes and the
direction of the mesh currents are consistent with the directions of
the mesh source voltages.

Proof. Proof is given in [17].

Theorem 4.3. The R, L, C, e electrical circuits are not positive for
any values of their resistances, inductances, capacitances and
source voltages if at least one their branch contains coil and capaci-
tor.
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Proof. Proof is given in [17].
Definition 4.2. [17] The positive electrical circuit (4.1) is called
asymptotically stable if

!im X(t) =0 forall x, € R . (4.3)

Theorem 4.4 [17] The positive electrical circuit (4.1) is asymptotical-
ly stable if and only if

ReX, <0 for k=1,...,n, (4.4)
where A, is the eigenvalue of the matrix A€ M and
det[I A—Al=(A -2 )A=2X,)...(A—1,). (45

Theorem 4.5. [3, 15] A symmetric matrix A€ R™ (AT = A)
has only real eigenvalues A, , k =1,...,n.

Theorem 4.6. Let Xk, k=1...,n be real eigenvalues of the

symmetric Hurwitz matrix A € R™. Then the matrix

A=DA eR™, D=diag[d, dJ]. d >0,
k=1..,n (4.6)

has also only real eigenvalues
A =dA, for k=1,...,n. @7

Proof. By Theorem 4.5 the symmetric matrix A has only real
eigenvalues A, , K =1,...,n. Note that
det[I A — DA] = det{D[D A — A]}=det Ddet[D "1 - A]

(4.8)
and

det[1 A — DA] =0 ifand only if

det{ DA — A]l=det[I A - A]=0. (49
The equality (4.9) implies (4.7). o

Example 4.1. Consider the electrical circuit shown on Figure 4.1
with given resistances R, R,, R;, inductances L, L, and

source voltages €, , €, .

L1

2

Ok

€
()
S
Fig. 4.1. Electrical circuit with inductances

Using the Kirchhoff's laws we may write the equations
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. di L
e = R1|1+L1d_tl+R3(ll_|2)’ (4.10a)
. di, o
e, =R,i, +1L, E+ R, (i, —i,) (4.10b)
which can be written in the form
dli i e
—| =Al"|+8B] |, (4.11)
dt|i, I e,
where
R +R; R, 1 0
'R Fig. 4.2. Electrical circuit of Example 4.2
A= RL1 RL1+R B 1 412
3 -2 3 0o = Using the Kirchhoff's laws we can write the equations
L, L, L, . . di,
e +& — (R +Ryi + R, = LLE’
The electrical circuit is positive since the matrix A, is a Metzler di
. . , , -(R, +R)i, +Rji, =L, - (4.16)
matrix and the matrix B, has nonnegative entries. e, — (R, + Ry)i, + Rqly = L, dt :
Using (4.12) for R, =R, =2, Ry =1 L=L,=2 we du
obtain e,+e-u=R,C—
dt
which can be written in the form
_R+R R 3 1
A= L L |_| 2 2 “13) i, i, e
R R, +R 1 3 di. :
] 273 - = i L |=AlL [+B,le, |, (4.17)
L, L, 2 2 J J e,
and
where
R +R, R,
- = 0
A+ 31 L L
det[1,A— A]=— 12 23=x2+3x+2=(x+1)(x+2). p-| R _RR
= A+ — L, L,
2 2 0 0 1
(4.14) R,C
1 1
: ; . _ _ il 0 il
Th(le eigenvalues of the matrix (4.13) are..kl =-1 A, =-2. L L | (4.18)
Using the results of Example 3.1 we obtain s-lo L o
2
LZ
1 1
L o1 0] o L[-3/2 12 0
At _ _ t_ q-2t t_ -2t —
e™ =c,(t),+c ()A =(2e" —e )[O 1}re e { 12 _3/2} RC R.C
efiel g pt The electrical circuit is positive since A, € M; and
= —e‘2‘2+e“ e_mi o B, € iRiXS for all values of the resistances, inductances and
5 2 capacitance.

(4.15)

Using 4.18)for R =R, =2, R, =R, =1, L =L, =1,
C, =1we obtain

Example 4.2. Consider the electrical circuit shown on Figure 4.2
with given resistances R,, k=1,...,4, inductances L, L,,

capacitance C and source voltages € i j=123.
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R +R, Ry 0
RL1 RL1 o -3 1 0
+
A = 3 -2 3 0 (=1 -3 0
LZ LZ
1 0 0 -1
0 0 -
L R,C |
(4.19)
and
A+3 -1 0
detll,Ai-Al=| -1 X+2 0 |=(A+D)(*+61+8)=RA+D(A+2)(1+4).
0 0 A+
(4.20)
The eigenvalues of the matrix (4.19) are: Il =-1, Xz =-2,
A, = 4.
Using the results of Example 3.2 we obtain
1 00
e™ =T, ()1, +C (A, +C,()AZ =B -3 +e ™) 0 1 0+
0 01
-3 1 0
+(5e“—4e‘2‘+3e‘3‘j 1 -3 0|+
2 2
0o 0 -1
-3 1 0T
+(;e“—e‘2‘+le‘3‘) 1 -3 0| =
0 0 -1
ﬂe"—31e’z‘+§e’3‘ —ée"—ZOe’ZWEe’“ 0
2 2 2
= —Z?Se"—ZOe’z‘Jr%e’m ﬂe"—i%le’z‘Jrée’3t 0

0 0
(4.21)

Concluding remarks

It has been shown that every matrix function f(A,t) well-
defined on its spectrum can be presented by (3.2) and the coeffi-
cients are given by (3.3) (Theorem 3.1). If the matrix A€ M has

distinct eigenvalues then the coefficients in the formula (3.6) satisfy
the conditions (3.7) - (3.9) (Theorem 3.2). The formula (3.6) allows

to compute the transition matrix "' for a given matrix A€ M |

with distinct eigenvalues. The efficiency of the method has been
demonstrated on examles of positive electrical circuits. The consid-
erations can be extended to matrices with multiple real and complex
eigenvalues. An extension of these considerations is also possible
for positive fractional linear electrical circuits.
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Obliczanie macierzy tranzycji
dodatnich liniowych obwodoéw elektrycznych

Podano metode obliczania macierzy tranzycji dodatnich obwodéw
elektrycznych. Wykazano, ze jezeli macierz tranzycji ma postaé
skofczonego szeregu macierzy Metzlera o réznych rzeczywistych
warto$ciach wtasnych to wspdtczynniki tego szeregu sa nieujemny-
mi funkcjami czasu. Metoda ta zostata zastosowana do analizy
dodatnich obwodéw elekirycznych.

Stowa kluczowe: dodatni, liniowy, obwdd elektryczny, obliczanie
,macierz tranzycji.
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