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A method is proposed for calculation of transition matrices of posi-
tive electrical circuits. It is shown that if the transition matrix is pre-
sented as finite series of the Metzler matrix with real distinct eigen-
values then the coefficients of the series are nonnegative function of 
time. The method is applied to positive linear electrical circuits.  

Słowa kluczowe: positive, linear, electrical circuits, calculation, transition 
matrix. 

1.Introduction 
A dynamical system is called positive if its trajectory starting 

from any nonnegative initial state remains forever in the positive 
orthant for all nonnegative inputs. An overview of state of the art in 
positive theory is given in the monographs [2, 9]. Variety of models 
having positive behavior can be found in engineering, especially in 
electrical circuits [17], economics, social sciences, biology and 
medicine, etc. [2, 9].  

The positive electrical circuits have been analyzed in [4-8, 10, 
17]. The constructability and observability of standard and positive 
electrical circuits has been addressed in [5], the decoupling zeros in 
[6] and minimal-phase positive electrical circuits in [7]. A new class 
of normal positive linear electrical circuits has been introduced in [8]. 
Positive fractional linear electrical circuits have been investigated in 
[11], positive linear systems with different fractional orders in [12, 
13] and positive unstable electrical circuits in [14]. Zeroing of state 
variables in descriptor electrical circuits has been addressed in [16] 
and the realization problem of positive linear systems in [1]. 

In this paper a method for computation of transition matrices of 
positive linear electrical circuits will be presented and some specific 
properties of the coefficients of finite series presenting the transition 
matrices will be investigated. 

The paper is organized as follows. In section 2 some basic defi-
nitions and theorems concerning matrices and Cayley–Hamilton 
theorem are recalled. The computation of the matrix function and 
the transition matrix are addressed in section 3. The stability and 
computation of the transition matrices of positive linear electrical 
circuits are investigated in section 4. Concluding remarks are given 
in section 5. 

The following notation will be used:   - the set of real num-

bers, 
mn  - the set of mn  real matrices and 

1 nn
, 

mn

  - the set of mn  matrices with nonnegative entries and 

1

  nn
, nM - the set of nn  Metzler matrices (real matri-

ces with nonnegative off-diagonal entries), nI - the nn  identity 

matrix, 
TA denotes the transpose of the matrix A. 

2.Preliminaries 

The characteristic polynomial of the matrix 
nnA   
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and its minimal polynomial )(  are related by [2, 15] 
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where )(D  is the greatest common divisor of entries of the 

adjoint matrix adn AI ][  . If the eigenvalues ,1  ,2  …, 

n  of the matrix A  are distinct, i.e. ji   if ,ji   

,,...,1, nji   then 1)( D  and )()(   [3, 15] 

Consider a matrix 
nnA   with the minimal character-

istic polynomial 
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It is assumed that the function )(f  is well-defined on 

spectrum },...,{ 21 rA   of the matrix ,A  i.e.  
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are finite. 

In this case the matrix )(Af  is well-defined and it is giv-

en by the Lagrange-Sylvester formula [3, 15]  
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Theorem 2.1. Let 
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be the minimal characteristic polynomial of the matrix 

).(Af  Then the matrix )(Af  satisfies its characteristic 

equation, i.e. 
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Proof. Proof is given in [3, 15]. 

In particular case for AAf )(  we obtain the classical 

Cayley–Hamilton theorem. 

3.Computation of the transition matrices 

Definition 3.1. The matrix 
nn

ijaA  ][ is call Metzler 

matrix if 0ija  for .ji   

The set of nn  Metzler matrices will be denoted .nM  To 

simplify the notation it is assumed that ji   for .ji   

Theorem 3.1. Let ,nnA   ),( tAf  be a matrix function well-

defined on the spectrum },...,{ 21 rA   of the matrix 

,A t  - time and it can be presented in the series form  
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Proof. Using the classical Cayley–Hamilton theorem we can elimi-

nate in (3.1) the matrix 
kA  for ,...1,  nnk  and obtain (3.2). 

It is well-known [3, 15] that (3.2) is also satisfied on the spectrum of 

the matrix A  
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The relations (3.4) can be written in the form 
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Using the well-known the Cramer formula to (3.5) we obtain 

(3.3). 

The matrix 
Ate  is called transition matrix of the linear systems. 

Theorem 3.2. If nMA  has distinct eigenvalues ,1  ,2  …, 

n  than the coefficients ),(tck  1,...1,0  nk  in the formula 
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satisfy the following conditions: 
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Proof. The equality (3.6) follows from (3.2) for and are defined by 
(3.3). From (3.3) we have 
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since )0(k  for 1,...,2,0  nk  has two identical columns. 

The condition (3.9) is satisfied since 
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Example 3.1. Consider the matrix 
Ate  for 
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with the eigenvalues ,11   .22   

By Theorem 3.2 we have 
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It will be shown that 
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Note that 
 

022)(
)( 2

12

210 21 



  tttt

eeee
dt

tdc
 for  

0t                                         (3.17) 

 
and 

 

02)(
1)( 2

12

12

1 12 


  tttt
eeee

dt

tdc
  for  

0t                                           (3.18) 

 
from (3.18) it follows that 

0
)(1 

dt

tdc
  for  

1

2

21

ln
1

0





 t  and  0

)(1 
dt

tdc
  

for  

1

2

21

ln
1

0





 t .                   (3.19) 

 
Therefore, the conditions of Theorem 3.2 are satisfied (see Fig. 3.1). 
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Fig. 3.1. Plots of coefficients )(tck  and their derivatives 

 

Example 3.2. Consider the matrix function 
Ate  for 3MA  with 

the eigenvalues ,11   ,22   .33   

Note that the matrix 3MA  is given by the set of matrices 
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Using(3.3) for (3.10) we obtain 
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From (3.21) - (3.23) is follows that ,1)0(0 c  ,0)0(1 c  

0)0(2 c  and 0)( tck  for .0t  

Therefore the conditions of Theorem 3.2 are satisfied (see Fig. 3.2). 
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Fig. 3.2. Plots of coefficients )(tck  and their derivatives 

4.The stability of positive electrical circuits and computation of 
their transition matrices  

Consider the linear continuous-time electrical circuit described 
by the state equations 

)()()( tButAxtx  ,                         (4.1a) 

)()()( tDutCxty  ,                         (4.1b) 

where 
ntx )( , 

mtu )( , 
pty )(  are the state, input 

and output vectors and 
nnA  , 

mnB  , 
npC  , 

mpD  . 

Definition 4.1. [2, 10, 17] The electrical circuit (4.1) is called (inter-

nally) positive if 
ntx )(  and 

ptyy  )( , 

],0[ t  for any 
nxx  )0(0  and every 

mtu )( , 

],0[ t . 

Theorem 4.1. [2, 10, 17] The electrical circuit (2.1) is positive if and 
only if 

 

nMA , 
mnB 

 , 
npC 

 , 
mpD 

 .       (4.2) 

 
It is well-known [2, 10, 17] that any linear electrical circuit com-

posed of resistors, coils, capacitors and voltage (current) sources 
can be described by the state equations (4.1). Usually as the state 

variables )(1 tx ,…, )(txn  (the components of the state vector 

)(tx ) the currents in the coils and voltages on the capacitors are 

chosen. 
Theorem 4.2. The linear electrical circuit composed of resistors, 
coils and voltage sources is positive for any values of the resistanc-
es, inductances and source voltages if the number of coils is less or 
equal to the number of its linearly independent meshes and the 
direction of the mesh currents are consistent with the directions of 
the mesh source voltages. 
Proof. Proof is given in [17]. 
Theorem 4.3. The R, L, C, e electrical circuits are not positive for 
any values of their resistances, inductances, capacitances and 
source voltages if at least one their branch contains coil and capaci-
tor. 

Proof. Proof is given in [17]. 
Definition 4.2. [17] The positive electrical circuit (4.1) is called 
asymptotically stable if 
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Theorem 4.4 [17] The positive electrical circuit (4.1) is asymptotical-
ly stable if and only if 
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where k  is the eigenvalue of the matrix nMA  and 
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Theorem 4.5. [3, 15] A symmetric matrix 
nnA   ( AAT  ) 

has only real eigenvalues k , nk ,...,1 . 

Theorem 4.6. Let k , nk ,...,1  be real eigenvalues of the 

symmetric Hurwitz matrix 
nnA  . Then the matrix  

nnADA  ,   ]diag[ 1 nddD  ,  0kd ,    

nk ,...,1                                       (4.6) 

has also only real eigenvalues  

kkk d    for  .,...,1 nk               (4.7) 

Proof. By Theorem 4.5 the symmetric matrix A  has only real 

eigenvalues k , nk ,...,1 . Note that 
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The equality (4.9) implies (4.7). □  

 
Example 4.1. Consider the electrical circuit shown on Figure 4.1 

with given resistances 1R , 2R , 3R , inductances 1L , 2L  and 

source voltages 1e , 2e . 

 

 
Fig. 4.1. Electrical circuit with inductances 

 
Using the Kirchhoff’s laws we may write the equations 
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)( 213
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1111 iiR
dt

di
LiRe  ,                 (4.10a) 

)( 123
2

2222 iiR
dt

di
LiRe                  (4.10b) 

 
which can be written in the form 
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The electrical circuit is positive since the matrix 1A  is a Metzler 

matrix and the matrix 1B  has nonnegative entries. 

Using (4.12) for ,221  RR  ,13 R  221  LL  we 

obtain 
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The eigenvalues of the matrix (4.13) are: ,11   .22   

Using the results of Example 3.1 we obtain 
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Example 4.2. Consider the electrical circuit shown on Figure 4.2 

with given resistances kR , 4,...,1k , inductances 1L , 2L , 

capacitance C  and source voltages je , .3,2,1j  

 

 
Fig. 4.2. Electrical circuit of Example 4.2 

 
Using the Kirchhoff’s laws we can write the equations 
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which can be written in the form 

 





















































3

2

1

22

1

22

1

e

e

e

B

u

i

i

A

u

i

i

dt

d
,                   (4.17) 

where 



































CR

L

RR

L

R

L

R

L

RR

A

4

2

32

2

3

1

3

1

31

2

1
00

0

0

, 



























CRCR

L

LL

B

44

2

11

2

11
0

0
1

0

1
0

1

.                            (4.18) 

The electrical circuit is positive since 32 MA   and 

33

2



B  for all values of the resistances, inductances and 

capacitance. 

Using (4.18) for ,221  RR ,143  RR ,121  LL  

11 C we obtain  
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The eigenvalues of the matrix (4.19) are: ,11   ,22   

.43   

Using the results of Example 3.2 we obtain 
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Concluding remarks 

It has been shown that every matrix function ),( tAf  well-

defined on its spectrum can be presented by (3.2) and the coeffi-

cients are given by (3.3) (Theorem 3.1). If the matrix nMA  has 

distinct eigenvalues then the coefficients in the formula (3.6) satisfy 
the conditions (3.7) - (3.9) (Theorem 3.2). The formula (3.6) allows 

to compute the transition matrix 
Ate  for a given matrix nMA  

with distinct eigenvalues. The efficiency of the method has been 
demonstrated on examles of positive electrical circuits. The consid-
erations can be extended to matrices with multiple real and complex 
eigenvalues. An extension of these considerations is also possible 
for positive fractional linear electrical circuits. 
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Obliczanie macierzy tranzycji  
dodatnich liniowych obwodów elektrycznych 

Podano metodę obliczania macierzy tranzycji dodatnich obwodów 
elektrycznych. Wykazano, że jeżeli macierz tranzycji ma postać 
skończonego szeregu macierzy Metzlera o różnych rzeczywistych 
wartościach własnych to współczynniki tego szeregu są nieujemny-
mi funkcjami czasu. Metoda ta została zastosowana do analizy 
dodatnich obwodów elektrycznych. 

Słowa kluczowe: dodatni, liniowy, obwód elektryczny, obliczanie 
,macierz tranzycji. 
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