PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To determine the effects of air pollution on crop yields, weather, air pollution, and maize and winter wheat yield data from 331 cities in China from 2014 to 2016 were collected and analysed. Furthermore, support vector regression and the crop growth model were applied to extrapolate the air pollution data of Beijing and Hetian and verify the relationship between air pollution and yield. Precisely, heavy air pollution usually occurred in North China, but less than moderate air pollution levels affected crop yields statistically insignificantly. Moreover, both the winter wheat and maize yields increased in moderate air pollution periods but decreased in heavy air pollution periods in 2014, 2015 and 2016. Importantly, a threshold value was necessary for the heavy air pollution periods to trigger a yield decrease. The threshold values of maize in 2015 and 2016 were 7 days and 5 days, respectively, while that of winter wheat was 10 days in both 2015 and 2016. Once the heavy air pollution periods exceeded the threshold value, both the winter wheat and maize yields decreased linearly with the periods. PM2.5 was the main air pollutant in Beijing in 2014, while PM2.5 and PM10 were the main air pollutants in Hetian in both 2015 and 2016. Regardless of whether the main air pollutant was PM2.5 or PM10, the simulated potential winter wheat yields by the crop growth model with moderate air pollution for the whole growth period were all higher than the yields under observed and heavy air pollution conditions.
Rocznik
Strony
237--256
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
autor
  • Irrigation Drainage and Water Conservation Center of Heilongjiang Province, Haerbin, 150000, China
autor
  • College of Agricultural Sciences and Engineering, Hohai Unversity, Nanjing, 210098, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
autor
  • State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
  • Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, D-53115 Bonn, Germany
  • Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, D-53115 Bonn, Germany
Bibliografia
  • [1] Zhang Q, Jiang X, Tong D, Davis SJ, Zhao H, Geng G, et al. Transboundary health impacts of transported global air pollution and international trade. Nature. 2017;543:705. DOI: 10.1038/nature21712.
  • [2] Zivin JG, Neidell M. Air pollution's hidden impacts. Science. 2018;359:39-40. DOI: 10.1126/science.aap7711.
  • [3] WHO. Burden of disease from household air pollution for 2012. World Health Organization. 2014;1211. Available from: https://www.ccacoalition.org/en/resources/world-health-organization-%E2%80%93-burdendisease-joint-effects-household-and-ambient-air.
  • [4] Chan CK, Yao X. Air pollution in mega cities in China. Atmos Environ. 2008;42:1-42. DOI: 10.1016/j.atmosenv.2007.09.003.
  • [5] Song C, Wu L, Xie Y, He J, Chen X, Wang T, et al. Air pollution in China: Status and spatiotemporal variations. Environ Pollut. 2017;227:334-47. DOI: 10.1016/j.envpol.2017.04.075.
  • [6] Liu M, Huang Y, Ma Z, Jin Z, Liu X, Wang H, et al. Spatial and temporal trends in the mortality burden of air pollution in China: 2004-2012. Environ Int. 2017;98:75-81. DOI: 10.1016/j.envint.2016.10.003.
  • [7] Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1659-724. DOI: 10.1016/S0140-6736(16)31679-8.
  • [8] Zhang Y, Wei J, Tang A, Zheng A, Shao Z, Liu X. Chemical characteristics of PM2.5 during 2015 Spring Festival in Beijing, China. Aerosol Air Quality Res. 2017;17:1169-80. DOI: 10.4209/aaqr.2016.08.0338.
  • [9] Lin H, Guo Y, Zheng Y, Di Q, Liu T, Xiao J, et al. Long-term effects of ambient PM2.5 on hypertension and blood pressure and attributable risk among older Chinese adults. Hypertension. 2017;69:806-12. DOI: 10.1161/HYPERTENSIONAHA.116.08839.
  • [10] Song L, Liu X, Skiba U, Zhu B, Zhang X, Liu M, et al. Ambient concentrations and deposition rates of selected reactive nitrogen species and their contribution to PM2.5 aerosols at three locations with contrasting land use in southwest China. Environ Pollut. 2018;233:1164-76. DOI: 10.1016/j.envpol.2017.10.002.
  • [11] Aunan K, Ma Q, Lund M T, Wang S. Population-weighted exposure to PM2. 5 pollution in China: An integrated approach. Environ Int. 2018;120:111-20. DOI: 10.1016/j.envint.2018.07.042.
  • [12] Wang S, Zhou C, Wang Z, Feng K, Hubacek K. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J Cleaner Production. 2017;142:1800-09. DOI: 10.1016/j.jclepro.2016.11.104.
  • [13] Guan W-J, Zheng X-Y, Chung KF, Zhong N-S. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet. 2016;388:1939-51. DOI: 10.1016/S0140-6736(16)31597-5.
  • [14] Xie Y, Dai H, Dong H, Hanaoka T, Masui T. Economic impacts from PM2.5 pollution-related health effects in China: a provincial-level analysis. Environ Sci Technol. 2016;50:4836-43. DOI: 10.1021/acs.est.5b05576.
  • [15] Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, et al. Rapid health transition in China, 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet. 2013;381:1987-2015. DOI: 10.1016/S0140-6736(13)61097-1.
  • [16] Rosielle A, Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci. 1981;21:943-6. DOI: 10.2135/cropsci1981.0011183X002100060033x.
  • [17] Nix H, Fitzpatrick E. An index of crop water stress related to wheat and grain sorghum yields. Agricultural Meteorology. 1969;6:321-37. DOI: 10.1016/0002-1571(69)90024-7.
  • [18] Mackill DJ, Ismail AM, Pamplona AM, Sanchez DL, Carandang JJ, Septiningsih EM. Stress tolerant rice varieties for adaptation to a changing climate. Crop Environ Bioinformatics. 2010;7:250-9. DOI: 10.30061/CEB.201012.0004.
  • [19] Farooq M, Hussain M, Wakeel A, Siddique KH. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy Sustainable Development. 2015;35:461-81. DOI: 10.1007/s13593-015-0287-0.
  • [20] Zeng W, Xu C, Wu J, Huang J, Zhao Q, Wu M. Impacts of salinity and nitrogen on the photosynthetic rate and growth of sunflowers (Helianthus annuus L.). Pedosphere. 2014;24:635-44. DOI: 10.1016/S1002-0160(14)60049-7.
  • [21] Zhao R-F, Chen X-P, Zhang F-S, Zhang H, Schroder J, Römheld V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy J. 2006;98:938-45. DOI: 10.2134/agronj2005.0157.
  • [22] Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science. 2006;312:1918-21. DOI: 10.1126/science.1114722.
  • [23] Fuhrer J. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agricult Ecosystems Environ. 2003;97:1-20. DOI: 10.1016/S0167-8809(03)00125-7.
  • [24] Tubiello FN, Donatelli M, Rosenzweig C, Stockle CO. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. European J Agronomy. 2000;13:179-89. DOI: 10.1016/S1161-0301(00)00073-3.
  • [25] Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc National Academy Sci. 2009;106:15594-8. DOI: 10.1073/pnas.0906865106.
  • [26] Avnery S, Mauzerall DL, Liu J, Horowitz LW. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmospheric Environ. 2011;45:2297-309. DOI: 10.1016/j.atmosenv.2011.01.002.
  • [27] Lin Y, Jiang F, Zhao J, Zhu G, He X, Ma X, et al. Impacts of O3 on premature mortality and crop yield loss across China. Atmospheric Environ. 2018;194:41-7. DOI: 10.1016/j.atmosenv.2018.09.024.
  • [28] Zhao H, Zheng Y, Wu X. Assessment of yield and economic losses for wheat and rice due to ground-level O3 exposure in the Yangtze River Delta, China. Atmospheric Environ. 2018;191:241-8. DOI: 10.1016/j.atmosenv.2018.08.019.
  • [29] Zhang J, Tian H, Yang J, Pan S. Improving representation of crop growth and yield in the dynamic land ecosystem model and its application to China. J Advances Modeling Earth Systems. 2018;10:1680-707. DOI: 10.1029/2017MS001253.
  • [30] Feng Z, Uddling J, Tang H, Zhu J, Kobayashi K. Comparison of crop yield sensitivity to ozone between open‐top chamber and free‐air experiments. Global Change Biology. 2018;24:2231-8. DOI: 10.1111/gcb.14077.
  • [31] Streets D, Waldhoff S. Present and future emissions of air pollutants in China: SO2, NOx, and CO. Atmospheric Environ. 2000;34:363-74. DOI: 10.1016/S1352-2310(99)00167-3.
  • [32] Schiferl LD, Heald CL, Kelly D. Resource and physiological constraints on global crop production enhancements from atmospheric particulate matter and nitrogen deposition. Biogeosciences. 2018;15:4301-15. DOI: 10.5194/bg-15-4301-2018.
  • [33] Kong WW, Zhang LP, Guo K, Liu ZP, Yang ZM. Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant Biotechnol J. 2010;8:88-99. DOI: 10.1111/j.1467-7652.2009.00469.x.
  • [34] Spierings FHFG. Influence of fumigations with NO2 on growth and yield of tomato plants. Netherlands J Plant Pathology. 1971;77:194-200. DOI: 10.1007/bf01977278.
  • [35] Ooi L, Matsuura T, Munemasa S, Murata Y, Katsuhara M, Hirayama T, et al. The mechanism of SO2-induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells. Plant, Cell Environ. 2019;42:437-47. DOI: 10.1111/pce.13406.
  • [36] Richards BL, Taylor OC. Status and redirection of research on the atmospheric pollutants toxic to field grown crops in Southern California. Air Repair. 1961;11:125-8. DOI: 10.1080/00022470.1961.10467980.
  • [37] Silveira GL, Lima MG, Reis GB, Palmieri MJ, Andrade-Vieria LF. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere. 2017;178:359. DOI: 10.1016/j.chemosphere.2017.03.048.
  • [38] Uka U, Hogarh J, Belford E. Morpho-anatomical and biochemical responses of plants to air pollution. Int J Modern Botany. 2017;7:1-11. DOI: 10.5923/j.ijmb.20170701.01.
  • [39] McLaughlin S, Mcconathy R, Duvick D, Mann L. Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white pine trees. Forest Sci. 1982;28:60-70. DOI: 10.1093/forestscience/28.1.60.
  • [40] Grote R, Samson R, Alonso R, Amorim JH, Cariñanos P, Churkina G, et al. Functional traits of urban trees: air pollution mitigation potential. Frontiers Ecology Environ. 2016;14:543-50. DOI: 10.1002/fee.1426.
  • [41] Patidar S, Bafna A, Batham A, Panwar K. Impact of urban air pollution on photosynthetic pigment and proline content of plants growing along the AB road Indore City, India. Int J Current Microbiol Appl Sci. 2016;5:107-13. DOI: 10.20546/ijcmas.2016.503.015.
  • [42] Van Der Eerden LJ, Tonneijck AE, Wijnands JH. Crop loss due to air pollution in the Netherlands. Environ Pollut. 1988;53:365-76. DOI: 10.1016/0269-7491(88)90046-2.
  • [43] Tai AP, Martin MV, Heald CL. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change. 2014;4:817. DOI: 10.1038/nclimate2317.
  • [44] Emberson L. Critical air quality effects: A focus on assessing crop growth, productivity and socio-economic implications of food supply. Air Quality Climate Change. 2017;51:50. DOI: 10.3316/informit.414557735559154.
  • [45] Liao T, Gui K, Jiang W, Wang S, Wang B, Zeng Z, et al. Air stagnation and its impact on air quality during winter in Sichuan and Chongqing, Southwestern China. Sci Total Environ. 2018;635:576. DOI: 10.1016/j.scitotenv.2018.04.122.
  • [46] Bai Z, Han J, Azzi M. Insights into measurements of ambient air PM2.5 in China. Trends Environ Analytical Chem. 2017;13:1-9. DOI: 10.1016/j.teac.2017.01.001.
  • [47] Wang YQ, Wang SY, Lai KK. A new fuzzy support vector machine to evaluate credit risk. IEEE Transact Fuzzy Systems. 2005;13:820-31. DOI: 10.1109/TFUZZ.2005.859320.
  • [48] Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: misc functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R package version 1.6-7 [M]. 2015. Available from: https://rdrr.io/rforge/e1071.
  • [49] Benkedjouh T, Medjaher K, Zerhouni N, Rechak S. Health assessment and life prediction of cutting tools based on support vector regression. J Intelligent Manufacturing. 2015;26:1-11. DOI: 10.1007/s10845-013-0774-6.
  • [50] Zhang Z, Ding S, Sun Y. A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task. Neurocomputing. 2020;410:185-201. DOI: 10.1016/j.neucom.2020.05.075.
  • [51] Smola AJ, Schölkopf B. A tutorial on support vector regression. Statistics Computing. 2004;14:199-222. DOI: 10.1023/B:STCO.0000035301.49549.88.
  • [52] Miao W, Huang X, Song Y. An economic assessment of the health effects and crop yield losses caused by air pollution in mainland China. J Environ Sci. 2017;56:102-13. DOI: 10.1016/j.jes.2016.08.024.
  • [53] Wahid A, Maggs R, Shamsi SR, Bell JN, Ashmore MR. Effects of air pollution on rice yield in the Pakistan Punjab. Environ Pollut. 1995;90:323-9. DOI: 10.1016/0269-7491(95)00024-L.
  • [54] Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB. Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut. 2003;126:323-9. DOI: 10.1016/S0269-7491(03)00245-8.
  • [55] Burney J, Ramanathan V. Recent climate and air pollution impacts on Indian agriculture. Proc National Acad Sci. 2014: 201317275. DOI: 10.1073/pnas.1317275111.
  • [56] Zeng W, Xu C, Zhao G, Wu J, Huang J. Estimation of sunflower seed yield using partial least squares regression and artificial neural network models. Pedosphere. 2018;28:764-74. DOI: 10.1016/S1002-0160(17)60336-9.
  • [57] Zhu J, Zeng W, Ma T, Lei G, Zha Y, Fang Y, et al. Testing and improving the WOFOST Model for Sunflower Simulation on Saline Soils of Inner Mongolia, China. Agronomy. 2018;8:172. DOI: 10.3390/agronomy8090172.
  • [58] Zeng W, Lei G, Zha Y, Fang Y, Wu J, Huang J. Sensitivity and uncertainty analysis of the HYDRUS-1D model for root water uptake in saline soils. Crop Pasture Sci. 2018;69:163-73. DOI: 10.1071/CP17020.
  • [59] Ma T, Zeng W, Li Q, Yang X, Wu J, Huang J. Shoot and root biomass allocation of sunflower varying with soil salinity and nitrogen applications. Agronomy J. 2017;109:2545-55. DOI: 10.2134/agronj2017.04.0194.
  • [60] Zeng W, Wu J, Hoffmann MP, Xu C, Ma T, Huang J. Testing the APSIM sunflower model on saline soils of Inner Mongolia, China. Field Crops Res. 2016;192:42-54. DOI: 10.1016/j.fcr.2016.04.013.
  • [61] Helms TC, Deckard E, Goos RJ, Enz JW. Soybean seedling emergence influenced by days of soil water stress and soil temperature. Agronomy J. 1996;88:657-61. DOI: 10.2134/agronj1996.00021962008800040026x.
  • [62] Campos H, Trejo C, Peña-Valdivia CB, García-Nava R, Conde-Martínez FV, Cruz-Ortega MR. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environ Experimental Botany. 2014;98:56-64. DOI: 10.1016/j.envexpbot.2013.10.015.
  • [63] Cai W, Li K, Liao H, Wang H, Wu L. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nature Climate Change. 2017;7:257. DOI: 10.1038/nclimate3249.
  • [64] Fan J, Wu L, Zhang F, Cai H, Wang X, Lu X, et al. Evaluating the effect of air pollution on global and diffuse solar radiation prediction using support vector machine modeling based on sunshine duration and air temperature. Renew Sust Energy Rev. 2018;94:732-47. DOI: 10.1016/j.rser.2018.06.029.
  • [65] Wang Y, Yang Y, Zhao N, Liu C, Wang Q. The magnitude of the effect of air pollution on sunshine hours in China. J Geophysical Res: Atmospheres. 2012;117. DOI: 10.1029/2011JD016753.
  • [66] Yang X, Zhao C, Zhou L, Wang Y, Liu X. Distinct impact of different types of aerosols on surface solar radiation in China. J Geophys Res: Atmospheres. 2016;121:6459-71. DOI: 10.1002/2016JD024938.
  • [67] Khodakarami J, Ghobadi P. Urban pollution and solar radiation impacts. Renew Sust Energy Rev. 2016;57:965-76. DOI: 10.1016/j.rser.2015.12.166.
  • [68] Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricult Water Manage. 2006;81:1-22. DOI: 10.1016/j.agwat.2005.03.007.
  • [69] Amundson RG, Maclean DC. Influence of oxides of nitrogen on crop growth and yield: An overview. Studies Environ Sci. 1982;21:501-10. DOI: 10.1016/B978-0-444-42127-2.50050-6.
  • [70] Wang D, Liu Z, Dian Y, Zhou Z, Fang S. Potential of detecting the sulfur dioxide stress on landscape plantsin spectral reflectance data. J Indian Soc Remote Sensing. 2018;46:561-8. DOI: 10.1007/s12524-017-0717-3.
  • [71] Choi D, Toda H, Kim Y. Effect of sulfur dioxide (SO2) on growth and physiological activity in Alnus sieboldiana at Miyakejima Island in Japan. Ecol Res. 2014;29:103-10. DOI: 10.1007/s11284-013-1103-4.
  • [72] Telesnicki MC, Martínez-Ghersa MA, Ghersa CM. Plant oxidative status under ozone pollution as predictor for aphid population growth: The case of Metopolophium dirhodum (Hemiptera: Aphididae) in Triticum aestivum (Poales: Poaceae). Biochem Systematics Ecology. 2018;77:51-6. DOI: 10.1016/j.bse.2018.02.004.
  • [73] Wang Y, Yi H, Han Y. Sulfur dioxide alleviates cadmium toxicity in the roots of foxtail millet seedlings. J Agro-Environ Sci. 2017;36:443-8. DOI: 10.11654/jaes.2016-1338.
  • [74] Fan J, Wu L, Zhang F, Cai H, Zeng W, Wang X, et al. Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China. Renew Sust Energy Rev. 2019;100:186-212. DOI: 10.1016/j.rser.2018.10.018.
  • [75] Chaudhuri S, Chowdhury AR. Air quality index assessment prelude to mitigate environmental hazards. Natural Hazards. 2018;91:1-17. DOI: 10.1007/s11069-017-3080-3.
  • [76] Giovanis E, Ozdamar O. Health status, mental health and air quality: evidence from pensioners in Europe. Environ Sci Pollut Res. 2018;25:1-20. DOI: 10.1007/s11356-018-1534-0.
  • [77] Świsłowski P, Kříž J, Rajfur M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol Chem Eng S. 2020;27(2):195-210. DOI: 10.2478/eces-2020-0013.
  • [78] Ilic P, Popovic Z, Neskovic Markic D. Assessment of meteorological effects and ozone variation in Urban area. Ecol Chem Eng S. 2020;27(3):373-85. DOI: 10.2478/eces-2020-0024.
  • [79] Filak M, Hoffman S. Study of trends in concentrations of basic air pollutants in the Malopolska Province. Ecol Chem Eng S. 2020;27(4):567-78. DOI: 10.2478/eces-2020-0035.
  • [80] Shen F, Ge X, Hu J, Nie D, Tian L, Chen M. Air pollution characteristics and health risks in Henan Province, China. Environ Res. 2017;156:625. DOI: 10.1016/j.envres.2017.04.026.
  • [81] Ghasemitehrani H, Fallah S, Mozafarian N, Miranzadeh S, Sadeghi S, Azidhak A. Effect of exposure to air pollution on placental weight in Isfahan-Iran. J Family Reprod Health. 2017;11:90-6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742669/.
  • [82] Plaia A, Salvo FD, Ruggieri M, Agró G. A multisite-multipollutant air quality index. Atmospheric Environ. 2013;70:387-91. DOI: 10.1016/j.atmosenv.2013.01.028.
  • [83] Kroto HW, Zielińska M, Rajfur M, Wacławek M. The climate change crisis? Chem Didact Ecol Metrol. 2016; 21(1-2):11-27. DOI: 10.1515/cdem-2016-0001.
  • [84] Crutzen PJ, Wacławek S. Atmospheric chemistry and climate in the anthropocene. Chem Didact Ecol Metrol. 2014;19(1-2):9-28. DOI: 10.1515/cdem-2014-0001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ca83b9f-e6b4-47ea-98d5-87b6814dbfac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.