PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antipathogenic copper coatings: electrodeposition process and microstructure analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper coatings are an important group of decorative-protective materials characterised by high corrosion resistance, excellent thermal and electrical conductivity, which lately gained more significance due to their antimicrobial activity. The main aim of the presented research was to electrodeposit homogenous copper coatings from the non-cyanide electrolyte solution in galvanostatic conditions on steel (1.4024) and nickel (Ni201) substrates, commercially used for surgical instruments. The effect of substrate finishes used in the production line, by shot peening with glass balls, corundum treatment and brushing on the coatings surface formation, was investigated. The substrates’ and coatings’ microstructural properties were analyzed by scanning and transmission electron microscopy, atomic force microscopy, and X-ray diffraction analysis. The current efficiency of the copper reduction on nickel and steel substrates was found to be above 95%. The copper layers adhere to both substrates, except those deposited on a brushed surface. Regardless of the substrate used, they have a nanocrystalline structure with an average crystallite size of 30 nm. Moreover, the coating surface morphology, which affects the nature of interaction with microorganisms, was effectively modified by the appropriate substrate finishing without changing the electrodeposition conditions.
Rocznik
Strony
art. e233, s. 1--11
Opis fizyczny
Bibliogr. 21 poz., il., wykr.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
autor
  • Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
  • CHIRMED-Manufacturer of Surgical and Medical Instruments, Rudniki, Poland
  • CHIRMED-Manufacturer of Surgical and Medical Instruments, Rudniki, Poland
autor
  • CHIRMED-Manufacturer of Surgical and Medical Instruments, Rudniki, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
Bibliografia
  • 1. Bharadishettar N, Bhat KU, Panemangalore DB. Coating technologies for copper based antimicrobial active surfaces: a perspective review. Metals (Basel). 2021. https:// doi.org/10.3390/ met11050711.
  • 2. https://antip athco at.wixsite.com/antip.athco.at. Accessed 27 Jan 2023.
  • 3. Zeiger M, Solioz M, Edongue H, Arzt E, Schneider AS. Surface structure influences contact killing of bacteria by copper. Microbiologyopen. 2014. https://doi.org/10.1002/mbo3.170.
  • 4. Ibrahim MAM, Bakdash RS. New non-cyanide acidic copper electroplating bath based on glutamate complexing agent. Surf Coat Technol. 2015. https://doi.org/10.1016/j.surfc oat. 2015. 10.024.
  • 5. Kamel MM, El_moemen AA, Abd A, Rashwan SM, Bolbol AM. Electrodeposition of nanocrystalline copper deposits using lactic acid-based plating bath. Metall. 2018;6:179-83.
  • 6. Wang X, Cao L-A, Yang G, Qu X-P. Study of direct Cu electrodeposition on ultra-thin Mo for copper interconnect. Microelectron Eng. 2016. https://doi.org/10.1016/j.mee. 2016.07.001.
  • 7. Krishnan RM, Kanagasabapathy M, Jayakrishnan S, Sriveeraraghavan S, Anantharam R, Natarajan SR. Electroplating of copper from a non-cyanide electrolyte. Plat Surf Finish. 1995;82(7):56-9.
  • 8. Kublanovsky V, Litovchenko K. Mass transfer and mechanism of electrochemical reduction of copper (II) from aminoacetate electrolytes. J Electroanal Chem. 2000. https://doi.org/10.1016/S0022-0728(00) 00372-7.
  • 9. Ballesteros JC, Chainet E, Ozil P, Meas Y, Trejo G. Electrodeposition of copper from non-cyanide alkaline solution containing tartrate. Int J Electrochem Sci. 2011;6:2632-51.
  • 10. Li Q, Hu J, Zhang J, Yang P, Huc Y, An M. Screening of electroplating additive for improving throwing power of copper pyrophosphate bath via molecular dynamics simulation. Chem Phys Lett. 2020. https://doi.org/10.1016/j.cplett.2020.
  • 11. Fabbri L, Giurlani W, Mencherini G, De Luca A, Passaponti M, Piciollo E, Fontanesi C, Caneschi A, Innocenti M. Optimisation of thiourea concentration in a decorative copper plating acid bath based on methane sulfonic electrolyte. Coat. 2022. https://doi.org/10.3390/ coati ngs12 030376.
  • 12. Ibrahim MAM. Copper electrodeposition from non-polluting aqueous ammonia baths. Plat Surf Finish. 2000;87(7):67-72.
  • 13. Gamburg YD, Zangari G. Theory and practice of metal electrodeposition. New York: Springer; 2011.
  • 14. Sanner A, Nohring WG, Thimons LA, Jacobs TDB, Pastewka L. Scale-dependent roughness parameters for topography analysis. Appl Surf Sci Adv. 2022. https://doi.org/10.1016/j.apsadv.2021.100190.
  • 15. Zheng S, Bawazir M, Dhall A, Kim HE, He L, Heo J, Hwang G. Implication of surface properties bacterial motility and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front Bioeng Biotechnol. 2021. https://doi.org/10.3389/fbioe. 2021.643722.
  • 16. Jacobs TDB, Junge T, Pastewka L. Quantitative characterization of surface topography using spectral analysis. Surf Topogr Metrol Prop. 2017. https://doi.org/10.1088/2051-672X/aa51f8.
  • 17. Watanabe T. Nano-plating microstructure control theory of plated film and data base of plated film microstructure. 1st ed. The Netherlands: Elsevier Ltd; 2004.
  • 18. Mwema FM, Akinlabi ET, Oladijo OP. Effect of substrate type on the fractal characteristics of AFM images of sputtered aluminium thin films. Mater Sci. 2020. https://doi.org/10.5755/j01.ms.26.1.22769.
  • 19. Defforge T, Coudron L, Menard O, Grimal V, Gautier G, Tran-Van F., Copper electrodeposition into macroporous silicon arrays for through silicon via applications. Microelectron Eng. 2013. https://doi.org/10.1016/j.mee. 2013.01.014.
  • 20. Zhong Y, Ping D, Song X, Yin F. Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu. J Alloys Compd. 2009. https://doi.org/10.1016/j.jallcom. 2008. 08.075.
  • 21. Kurapova O, Grashchenko AS, Archakov I, Golubevd SN, Konakov VG. The microstructure and mechanical properties of twinned copper-bismuth films obtained by DC electrodeposition. J Alloys Compd. 2021. https://doi.org/10.1016/j.jallcom. 2020.158007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ca3fef4-b923-4a7a-b009-d0763fd6ab9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.