PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recently formed arsenates from an abandoned mine in Radzimowice (SW Poland) and the conditions of their formation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the mining galleries of the abandoned Au-As mine in Radzimowice, diverse groups of secondary arsenates crystallized recently. They form several characteristic assemblages. In the first of them the typical minerals are bukovskýite and melanterite. The second group of secondary arsenates includes scorodite, kaňkite, zýkaite, and pitticite. The third assemblage includes Co-Ni-Mg arsenates of the erythrite-annabergite-hörnesite series. The first assemblage crystallized in a zone with a very high activity of sulphate and arsenate ions and where the pH varies within a narrow range of 2.0-3.5. The second group of secondary arsenates formed in the acidic zone. The minerals identified here suggest pH variation within fairly wide ranges, from about 2.0 to 5.5. Contrary to the first and second mineral assemblage, the Co-Ni-Mg arsenates formed under different geochemical conditions. Their crystallization took place under weak acidic to neutral conditions.
Rocznik
Strony
423--442
Opis fizyczny
Bibliogr. 106 poz., rys., tab., wykr.
Twórcy
autor
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-098 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-098 Warszawa, Poland
Bibliografia
  • 1. Aloune, S.H. and Hiroyoshi, N., Ito M. 2015. Stability of As(V)-sorbed schwertmannite under porphyry copper mine conditions. Minerals Engineering, 74, 51–59.
  • 2. Baranowski, Z. 1988. Lithofacies characteristics of trench-fill metasediments in the Radzimowice Slate (Paleozoic, Sudetes, SW Poland). Annales Societatis Geologorum Poloniae, 58, 325–383.
  • 3. Baron, D. and Palmer, C.D. 1996. Solubility of jarosite at 4-35ºC. Geochimica et Cosmochimica Acta, 60, 185–195.
  • 4. Bigham, J.M., Carlson, L. and Murad, E. 1994. Schwertmannite, a new iron oxyhydroxysulfate from Pyhäsalmi, Finland and other localities. Mineralogical Magazine, 58, 641–648.
  • 5. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. and Wolf, M. 1996. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimca Acta, 60, 2111–2121.
  • 6. Bigham, J.M. and Nordstrom, D.K. 2000. Iron and aluminium hydroxysulfates from acid sulfate waters, in: Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance. Reviews in Mineralogy and Geochemistry, 40, 351–403.
  • 7. Bluteau, M.-C. and Demopoulos, G.P. 2007. The incongruent dissolution of scorodite - Solubility kinetics and mechanism. Hydrometallurgy, 87, 163–177.
  • 8. Bowell, R.J. 1994. Sulphide oxidation and arsenic speciation in tropical soils. Environmental Geochemistry and Health, 16, 84.
  • 9. Bowell, R.J. and Parshley, J.V. 2005. Control of pit-lake water chemistry by secondary minerals, Summer Camp pit, Getchell mine, Nevada. Chemical Geology, 215, 373–385.
  • 10. Čech, J., Jansa, J. and Novák, F. 1976. Kaňkite, FeAsO4·3.5H2O, a new mineral. Neues Jahrbuch für Mineralogie Monatshefte, 5, 426–436.
  • 11. Čech, J., Jansa, J. and Novák, F. 1978. Zýkaite, Fe3+4(AsO 4) 3(-SO 4)(OH)·15H2O, a new mineral. Neues Jahrbuch für Minera lo gie Monatshefte, 3, 134–144.
  • 12. Chukhlantsev, V.G. 1956. The solubility products of a number of arsenates. Journal of Analytical Chemistry of the USSR, 11, 565–571.
  • 13. Cłapa, T., Narożna, D., Siuda, R., Borkowski, A., Selwet, M. and Mądrzak, C. 2019. Diversity of Bacterial Communities in the Acid Mine Drainage Ecosystem of an Abandoned Polymetallic Mine in Poland. Polish Journal of Environmental Studies, 28, 2109–2119.
  • 14. Debekaussen, R., Droppert, D. and Demopoulos, G.P. 2001. Ambient pressure hydrometallurgical conversion of arsenic trioxide to crystalline scorodite. Canadian Institute of Mining and Metallurgy Bulletin, 94, 116–122.
  • 15. DeSisto, S.L., Jamieson, H.E. and Parsons, M.B. 2011. Influence of hardpan layers on arsenic mobility in historical gold mine tailings. Applied Geochemistry, 26, 2004–2018.
  • 16. Dove, P.M and Rimstidt, J.D. 1985. The solubility and stability of scorodite, FeAsO 4·2H 2O. American Mineralogist, 70, 838–844.
  • 17. Drahota, P and Filippi, M. 2009. Secondary arsenic minerals in the environment: A review. Environmental International, 35, 1243–1255.
  • 18. Dunn, P.J. 1982. New data for pitticite and a second occurrence of yukonite at Sterling Hill, New Jersey. Mineralogical Magazine, 46, 261–264.
  • 19. Dutrizac, J.E. and Jambor, J.L. 2000. Jarosite and their application in hydrometallurgy. In: Alpers, C.N. and Jambor, J.L. (Eds), Sulfate Minerals: Crystallography. Geochemistry and Environmental Significance, Vol. 40. Mineralogical Society of America, 443, 405–452.
  • 20. Dziekoński, T. 1972. Wydobywanie i metalurgia kruszców na Dolnym Śląsku od XIII do połowy XX wieku. PAN-IHKM, Zakład Narodowy im. Ossolińskich, Wrocław-Warszawa-Gdańsk, 420, 1–420.
  • 21. Fiedler, H. 1863. Die Mineralien Schlesiens mit Berücksichtigung der angrenzenden Länder, 121 pp. Breslau. [In German].
  • 22. Filippi, M., Goliáš, V. and Pertold, Z. 2004. Arsenic in contaminated soils and anthropogenic deposits at the Mokrsko, Roudný, and Kašperské Hory gold deposits, Bohemian Massif (CZ). Environmental Geology, 45, 716–730.
  • 23. Foster, A.L., Brown Jr., G.E., Tingle, T.N., Parks, G.A., Voigt, D.E. and Brantley, S.L. 1997. XAFS determination of As speciation in weathered mine tailings and contaminated soil from California, USA. Journal de Physique IV (Proceedings), 7, 815–816.
  • 24. Frau, F. 2000. The formation-dissolution-precipitation-cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications. Mineralogical Magazine, 64, 995–1006.
  • 25. Frost, R.L., Scholz, R., Jirásek, J. and Belotti, F.M. 2015. An SEM-EDX and Raman spectroscopic study of the fibrous arsenate mineral liskeardite and in comparison with other arsenates kaňkite, scorodite and yvonite. Spectrochimica Acta Part A: Molecural and Biomelecular Spectroscopy, 151, 566–575.
  • 26. Frost, R.L., Xi Y., Palmer, S.J. and Tan, K. 2011. Molecular structural studies of the amorphous mineral pitticite Fe, AsO4, SO4, H2O. Journal of Molecular Structure, 1005, 78–82.
  • 27. Frost, R.L., Xi, Y., Tan, K., Millar, G.J. and Palmer, S.J. 2012. Vibrational spectroscopic study of the mineral pitticite Fe, AsO 4, SO 4 , H 2 O. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85, 173–178.
  • 28. Gaskova, O.L., Shironosova, G.P. and Bortnikova, S.B. 2008. Thermodynamic Estimation of the Stability Field of Bukovskýite, an Iron Sulfoarsenate. Geochemistry International, 1 (46), 85–91.
  • 29. Gieré, R., Sidenko, N.V. and Lazareva, E.V. 2003. The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359.
  • 30. Gomez, A.M., Assaaoudi, H., Becze, L., Cutler, J.N. and Demopoulos, G.P. 2010. Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO 4·2H 2O), ferric arsenate sub-hydrate (FAsH; FeAsO 4·0.75H 2 O) and basic ferric arsenate sulfate (BFAS; Fe[(AsO 4)1-x(SO 4)x(OH)x]·wH 2O). Journal of Raman Spectroscopy, 41, 212–221.
  • 31. Haffert, L., Craw, D. and Pope, J. 2010. Climatic and compositional controls on secondary arsenic mineral formation in high-arsenic mine wastes, South Island, New Zealand. New Zealand Journal of Geology and Geophysics, 53, 91–101.
  • 32. Haydukiewicz, A. and Urbanek, Z. 1986. Zmetamorfizowane skały dewońskie we wschodniej części jednostki Bolkowa (Góry Kaczawskie). Geologia Sudetica, 20, 185–196. [In Polish]
  • 33. Hering, J. and Kneebone, P.E. 2002. Biogeochemical controls on arsenic occurrence and mobility in water supplies. In: Frankenberger, W. (Ed.), Environmental Chemistry of Arsenic. Marcel Dekker, New York, 159, 155–181.
  • 34. Holeczek, J. and Janeczek, J. 1991. Pseudomalachite from Radzimowice and some comments on its occurrence in Miedzianka (Sudetes Mts.). Mineralogia Polonica, 22 (1), 17–26.
  • 35. Jelenová, H., Majzlan, J., Amoako, F.Y. and Drahota, P. 2018. Geochemical and mineralogical characterization of the arsenic-, iron-, and sulfur-rich mining waste dumps near Kaňk, Czech Republic. Applied Geochemistry, 97, 247–255.
  • 36. Jelenová, H., Drahota, P., Falteisek L. and Culka, A. 2021. Arsenic- rich stalactites from abandoned mines: Mineralogy and biogeochemistry. Applied Geochemistry, 129, 104960.
  • 37. Johnson, D.B., Dybowska, A., Schofield, P.F., Herrington, R.J., Smith, S.L. and Santos, A.L. 2020. Bioleaching of arsenic-rich cobalt mineral resources, and evidence for concurrent biomineralisation of scorodite during oxidative bio-processing of skutterudite. Hydrometallurgy, 195, doi. org/10.1016/j.hydromet.2020.105395.
  • 38. Kato, A., Matsubara, S., Nagashima, K., Nakai, I. and Shimizu, M. 1984. Kaňkite from the Suzukura mine, Kenzan city, Yamanashi Prefecture, Japan. Mineralogical Journal, 12(1), 6–14.
  • 39. Kim, J.J., Kim, S.J. and Tazaki, K. 2002. Mineralogical characterization of microbial ferrihydrite and schwertmannite, and non-biogenic Al-sulphate precipitates from acid mine drainage in the Donghae mine area, Korea. Environmental Geology, 42, 19–31.
  • 40. Kim, J.J. and Kim, S.J. 2004. Seasonal factors controlling mineral precipitation in the acid mine drainage at Donghea coal mine, Korea. Science of the Total Environment, 325, 181–191.
  • 41. Knorr, K.-H. and Blodau, C. 2007. Controls on schwertmannite transformation rates and products. Applied Geochemistry, 22, 2006–2015.
  • 42. Kocourková, E., Cempírek J. and Losos Z. 2008. Kaňkit z Dlouhé Vsi u Havlíčkova Brodu. Acta rerum naturalium, 4, 7–12.
  • 43. Kocourková, E., Sracek, O., Houzar, S., Cempírek, J., Losos, Z., Filip, J. and Hršelová, P. 2011. Geochemical and mineralogical control on the mobility of arsenic in a waste rock pile at Dlouhá Ves, Czech Republic. Journal of Geochemical Exploration, 110, 61–73.
  • 44. Kocourková-Víšková, E., Loun, J., Sracek, O., Houzar S. and Filip J. 2015. Secondary arsenic minerals and arsenic mobility in a historical waste rock pile at Kaňk near Kutná Hora, Czech Republic. Mineralogy and Petrology, 109, 17–33.
  • 45. Kozdrój, W., Krentz, O. and Opletal, M. 2001. Comments on the Geological Map Lausitz-Izera-Karkonosze, 1:100 000. Polish Geological Institute, Warszawa.
  • 46. Krause, E. and Ettel, V.A. 1989. Solubilities and stabilities of ferric arsenate compounds. Hydrometallurgy, 22, 311–337.
  • 47. Kubisz, J. 1971. Studies on synthetic alkali-hydronium jarosites II: thermal investigations. Mineralogia Polonica, 2, 51–60.
  • 48. Langmuir, D., Mahoney, J., MacDonald, A and Rowson, J. 1999. Predicting arsenic concentrations in the porewaters of buried uranium mill tailing. Geochimica et Cosmochimica Acta, 63, 3379–3394.
  • 49. Langmuir, D., Mahoney, J. and Rowson, J. 2006. Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70, 2942–2956.
  • 50. Leblanc, M., Achard, B., Ben Othman, D. and Luck, J.M. 1996. Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Applied Geochemistry, 11, 541–554.
  • 51. Li, H., Wang, N., Xiao, T., Zhang, X., Wang, J., Tang, J. and Quan, H. 2021. Sorption of arsenate(V) to naturally occurring secondary iron minerals formed at different conditions: The relationship between sorption behavior and surface structure. Chemosphere, 285, 131–525.
  • 52. Loun, J. Pauliš, P. Novák, F., Plášil, J. and Ševců, J. 2010. Supergene As mineralization of the mine dump Stará Plime at Kaňk near Kutná Hora (Czech Republic). Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 18, 73–77. [In Czech with English abstract]
  • 53. Loun, J., Čejka, J., Sejkora, J., Plášil, J., Novák, M., Frost, R.L., Palmer, S. and Keeffe, E. 2011. A Raman spectroscopic study of bukovskýite Fe 2(AsO 4)(SO 4)(OH)·7H 2O, a mineral phase with a significant role in arsenic migration. Journal of Raman Spectroscopy, 42, 1596–1600.
  • 54. Machowiak, K., Amstrong, R., Kryza, R. and Muszyński, A. 2008. Late-orogenic magmatism in the Central European Variscides: SHRIMP U-Pb zircon age constraints from the Żeleźniak intrusion, Kaczawa Mountains, West Sudetes. Geologia Sudetica, 40, 1–18.
  • 55. Mahoney, J., Slaughter, M., Langmuir, D. and Rowson, J. 2007. Control of As and Ni release from a uranium mill tailings neutralization circuit: Solution chemistry, mineralogy and geochemical modeling of laboratory study results. Applied Geochemistry, 22, 2758–2776.
  • 56. Mains, D and Craw, D. 2005. Composition and mineralogy of historic gold processing residues, east Otago. New Zeland. New Zeland Journal of Geology and Geophysics, 48, 641–647.
  • 57. Majzlan, J., Łazić B., Armbruster, T., Johnson, M.B., White, M.A., Fisher, R.A., Plášil, J., Loun, J., Škoda, R. and Novák, M. 2012. Crystal structure, thermodynamic properties, and paragenesis of bukovskýite, Fe 2(AsO 4 )(SO 4) (OH)·9H2O. Journal of Mineralogical and Petrological Sciences, 107 (3), 133–148.
  • 58. Majzlan, J., Amoako, F.Y., Kindlová, H. and Drahota, P. 2015. Thermodynamic properties of zýkaite, a ferric sulfoarsenate. Applied Geochemistry, 61, 294–301.
  • 59. Majzlan, J., Palatinus L. and Plášil, J. 2016. Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydratation product of kaňkite. European Journal of Mineralogy, 28, 63–70.
  • 60. Majzlan, J. 2020. Processes of metastable-mineral formation in oxidation zones and mine waste. Mineralogical Magazine, 84, 367–375.
  • 61. Manecki, A. 1962. Mineralizacja miedzią występująca w rejonie Bukowej Góry koło Radzimowic (Dolny Śląsk). Sprawozdania z Posiedzeń Komisji Nauk Mineralogicznych PAN Oddział w Krakowie, 2, 460–461.
  • 62. Manecki, M. 1965. Mineralogical and petrographical study of ore veins of the vicinity of Wojcieszów (Lower Silesia). Prace Mineralogiczne, 2, 1–90. [In Polish with English summary]
  • 63. Markl, G., Marks, M.A.W., Derrey, I. and Gührig, J.-E. 2014. Weathering of cobalt arsenides: Natural assemblages and calculated stability reactions among secondary Ca-Mg-Co arsenates and carbonates. American Mineralogist, 99, 44–56.
  • 64. Márquez, M., Gaspar, J., Bessler, K.E. and Mageda, G. 2006. Process mineralogy of bacterial oxidized gold ore in São Bento Mine (Brasil). Hydrometallurgy, 83, 114–123.
  • 65. Matschullat, J. 2000. Arsenic in the geosphere - a review. Science of the Total Environment, 249, 297–312.
  • 66. Mikulski, S.Z. 2003. Proceedings of the 7th Biennial SGA meeting, Athens, Greece, 24–28 August. Multiple episodes of magmatic and hydrothermal activity at the Radzimowice gold deposit in the Sudetes Mountains (Bohemian Massif, Poland), 339–342. Mineral exploration and sustainable development; Millpress.
  • 67. Mikulski, S.Z. 2005. Geological, mineralogical and geochemical characteristics of the Radzimowice Au-As-Cu deposit from the Kaczawa Mountains (Western Sudetes, Poland): an example of the transition of porphyry and epithermal style. Mineralium Deposita, 39, 904–920.
  • 68. Mikulski S.Z. 2007. The late Variscan gold mineralization in the Kaczawa Mountains, Western Sudetes. Polish Geological Institute Special Papers, 22, 1–162.
  • 69. Mikulski, S.Z. 2011. Gold deposits in Kaczawa Mountains, West Sudetes, SW Poland. Archivum Mineralogiae Monograph, 2, 63–83.
  • 70. Mikulski, S.Z and Muszyński, A. 2012. Petzite (Ag3AuTe2) - a new telluride mineral from the Radzimowice deposit (Sudetes, SW Poland). Mineralogical Society of Poland - Special Papers, 40, 103–104.
  • 71. Mikulski, S.Z. and Williams I.S. 2014. Zircon U-Pb dating of igneous rocks in the Radzimowice and Wielisław Złotoryjski auriferous polymetallic deposits, Sudetes, SW Poland. Annales societatis Geologorum Poloniae, 48, 213–233.
  • 72. Morin, G. and Calas, G. 2006. Arsenic in soils, mine tailings, and former industrial sites. Elements, 2, 97–101.
  • 73. Murad, E. and Rojík, P. 2003. Iron-rich precipitates in a mine drainage environment: Influence of pH on mineralogy. American Mineralogist, 88, 1915–1918.
  • 74. Nordstrom, D.K. and Alpers, C.N. 1999. Geochemistry of acid mine waters. In: Plumlee, G.S., Logsdon, M.J. (Eds.). The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques and Health Issues, Reviews in Economic Geology, Vol. 6A. Society of Economic Geologists, 136, 133–160.
  • 75. Norlund, K.L.I., Baron, C. and Warren, L.A. 2010. Jarosite formation by an AMD sulphide-oxidizing environmental enrichment: implications for biomarkers on Mars. Chemical Geology, 275, 235–242.
  • 76. Novák, F., Povondra, P. and Vtělenský, J. 1967. Bukovskýite, Fe2+2(AsO4)(SO4)(OH)·7H2O, from Kaňk, near Kutná Hora - a new mineral. Acta Universitatis Carolinae - Geologica, 4, 297–325.
  • 77. Ondruš, P., Skála, R., Viti, C., Veselovský, F., Novák, F. and Jansa, J. 1999. Parascorodite, FeASO 4·2H 2O - a new mineral from Kaňk near Kutná Hora, Czech Republic. American Mineralogist, 84, 1439–1444.
  • 78. Paktunc, D., Dutrizac, J. and Gertsman, V. 2008. Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility. Geochimica et Cosmochimica Acta, 72, 2649–2672.
  • 79. Paktunc, D. and Bruggeman, K. 2010. Solubility of nanocrystalline scorodite and amorphous ferric arsenate: implications for stabilization of arsenic in mine wastes. Applied Geochemistry, 25, 674–683.
  • 80. Parafiniuk, J. and Siuda R. 2006. Schwertmannite precipitated from acid mine drainage in the Western Sudetes (SW Poland) and its arsenate sorption capacity. Geological Quarterly, 50, 475–486.
  • 81. Parafiniuk, J., Siuda, R. and Borkowski, A. 2016. Sulphate and arsenate minerals as environmental indicators in the weathering zones of selected ore deposits, Western Sudetes, Poland. Acta Geologica Polonica, 66 (3), 493–508.
  • 82. Parviainen, A., Lindsay, M.B.J., Pérez-López, R., Gibson, B.D., Ptacek, C.J, David W. Blowes, D.W. and Loukola-Ruskeeniemi, K. 2012. Arsenic attenuation in tailings at a former Cu-W-As mine, SW Finland. Applied Geochemistry, 27, 2289–2299.
  • 83. Paulo, A. and Salomon, W. 1974. Contribution to the knowledge of a polymetallic deposit at Stara Góra. Kwartalnik Geologiczny, 18 (2), 266–276. [In Polish with English summary]
  • 84. Qi, X., Li, Y., Wei, L., Hao, F., Zhu, X., Wei, Y., Li, K. and Wang, H. 2020. Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite. Royal Society of Chemistry Advances, 10, 29–42.
  • 85. Robins, R.G. 1987. Solubility and stability of scorodite, FeAs O4·2H2O: Discussion. American Mineralogist, 72, 842–844.
  • 86. Rong,, Z., Tang, X., Wu, L., Chen, X., Dang, W. and Wang, Y. 2020. A novel method to synthesize scorodite using ferrihydrite and its role in removal and immobilization of arsenic. Journal of Materials Research and Technology. 198, 106936.
  • 87. Salzsauler, K.A., Sidenko, N.V. and Sherriff, B.L. 2005. Arsenic mobility in alternation products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Applied Geochemistry, 20, 2303–2314.
  • 88. Siuda, R. 2004. Iron arsenates from Stara Góra deposit at Radzimowice in Kaczawa Mountains, Poland - a preliminary report. Mineralogical Society of Poland - Special Papers, 24, 345–348.
  • 89. Siuda, R. and Kruszewski, Ł. 2005. Arsenate mottramitte from the Stara Góra deposit (Kaczawa Mts., Poland) - preliminary report. Mineralogical Society of Poland - Special Papers, 26, 262–265.
  • 90. Siuda, R and Kruszewski, Ł. 2013. Recently formed secondary copper minerals as indicators of geochemical conditions in an abandoned mine in Radzimowice (SW Poland). Geological Quarterly, 57, 583–600.
  • 91. Smedley, P.L. and Kinniburgh, D.G. 2002. A review of the source, behaviour and distribution of arsenic from mine tailings. Applied Geochemistry, 17, 517–568.
  • 92. Stahl, R.S., Fanning, D.S. and James, B.R. 1993. Goethite and Jarosie precipitation from ferrous sulfate solutions. Soil Science Society of America Journal, 57, 280–282.
  • 93. Stauffacher, J. 1916. Der Goldgangdistrikt von Altenberg in Schlesien. Zeitschrift für praktische Geologie, 23, 53–88.
  • 94. Sylwestrzak, H. and Wołkowicz, K. 1985. A new assemblage of Sn-W-Mo minerals from Stara Góra (Lower Silesia) and its genetic significance. Przegląd Geologiczny, 33, 73–75. [In Polish with English summary]
  • 95. Tang, Y., Xie, Y., Lu, G., Ye, H., Dang, Z., Wen, Z. and Yi, X. 2020. Arsenic behavior during gallic acid-induced redox transformation of jarosite under acidic conditions. Chemosphere, 255, 12693.
  • 96. Traube, H. 1888. Die Minerale Schlesiens. 286 pp. J.U. Kern’s Verlag (Max Miller); Breslau. [In German]
  • 97. Triantafyllidis, S. and Skarpelis, N. 2006. Mineral formation in an acid pit lake from a high-sulfidation ore deposit: Kirki, NE Greece. Journal of Geochemical Exploration, 88, 68–71.
  • 98. Ugarte, F.J.G. and Monhemius, A.J. 1992. Characterisation of high-temperature arsenic-controlling residues from hydrometallurgical processes. Hydrometallurgy, 30 (1–3), 69–86.
  • 99. Urbanek, Z., Baranowski Z. 1986. Revision of age of the Radzimowice schists from the Góry Kaczawskie Western Sudetes. Annales Societatis Geologorum Poloniae, 56, 399–408.
  • 100. Voigt, D.E., Brantley, S.L. and Hennet, R.J.-C.1996. Chemical fixation of arsenic in contaminated soils. Applied Geochemistry, 11, 633–643.
  • 101. Wang, Y., Gao, M., Huang, W., Wang, T. and Liu, Y. 2020. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite. Chemosphere, 251, 126427.
  • 102. Welch, A.H., Westjohn, D.B., Helsel, D.R. and Wanty, R.B. 2000. Arsenic in ground water of the United States: occurrence and geochemistry. Groundwater, 38, 589–604.
  • 103. Yu, J.Y., Park, M. and Kim, J. 2002. Solubilities of synthetic schwertmannite and ferrihydrite. Geochemical Journal, 36, 119–132.
  • 104. Yuan, T.C., Jia, Y.F. and Demopoulos, G.P. 2005. Synthesis and solubility of crystalline annabergite Ni 3(AsO 4) 2·8H 2O. Canadian Metallurgical Quarterly, 44, 449–456.
  • 105. Zhu, Y.N., Zhang, X.H., Chen, Y.D., Zeng, H.H., Liu, J., Liu, H.L. and Wang, X.M. 2013. Characterization, dissolution and solubility of synthetic erythrite [Co 3(AsO 4) 2·8H2O] and annabergite [Ni (AsO 4)2·8H2O] at 25 oC. Canadian Metallurgical Quarterly, 51, 7–17.
  • 106. Zimnoch, E. 1965. New data about ore mineralization in Stara Góra deposit. Biuletyn Geologiczny Wydziału Geologii UW, 5, 3–38 [In Polish].
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ca32507-1554-4ec4-88f8-f6f0db8cf6eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.