PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size-fractionated chlorophyll a and phycocyanin temporal variations in a highly eutrophic lake and its isolated karstic springs

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Monthly variations of size-fractionated chlorophyll a and phycocyanin were studied in Lake Pamvotis between August 2016 and January 2017. Sampling was conducted at two sampling sites: in the main lake (Site 1: Lake) and in an adjacent man-made water ski lake with karstic springs (Site 2: Springs). Samples were fractionated into three size classes: 0.2–2 μm (pico), 2–20 μm (nano) and 20–180 μm (micro). According to chlorophyll a values, eutrophic to hypereutrophic conditions prevail at Site 1 and oligotrophic to mesotrophic conditions – at Site 2. Similarly, Site 1 was distinguished by higher concentration of phycocyanin compared to Site 2. Fractionated chlorophyll a showed monthly variations at Site 1 with alternations in the dominance between the two larger fractions. The maximum of the 0.2–2 μm fraction was observed in October but it contributed less to the total chlorophyll a content than nano- or microphytoplankton. Its contribution was higher at Site 2, reaching occasionally ~ 40% of the bulk chlorophyll a. However, nanophytoplankton was the fraction found to respond faster when disturbances occurred. At Site 1, phycocyanin correlated well with total chlorophyll a as well as with the micro- and nanophytoplankton fractions, indicating that cyanobacteria represent an important component of the large-sized phytoplankton in Lake Pamvotis.
Rocznik
Strony
118--127
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
autor
  • Department of Biological Applications and Technology, University of Ioannina, 45100 Ioannina, Greece
autor
  • Department of Biological Applications and Technology, University of Ioannina, 45100 Ioannina, Greece
  • Department of Biological Applications and Technology, University of Ioannina, 45100 Ioannina, Greece
autor
  • Department of Biological Applications and Technology, University of Ioannina, 45100 Ioannina, Greece
Bibliografia
  • [1]. Agawin, N.S.R., Duarte, C.M. & Agustí, S. (2000). Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591-600.
  • [2]. Agustí, S. & Duarte, C.M. (2013). Phytoplankton lysis predicts dissolved organic carbon release in marine plankton communities. Biogeosciences 10: 1259-1264.
  • [3]. Albanis, T., Pomonis, P. & Sdoukos, A. (1986). Seasonal fluctuation of organochlorine and triazines pesticides in the aquatic system of loannina basin (Greece). Sc. of Total Environment 58: 243-253.
  • [4]. Andersson, A., Haecky, P. & Hagström, Å. (1994). Effect of temperature and light on the growth of micro- nano- and pico-plankton: impact on algal succession. Marine Biology 120: 511.
  • [5]. Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. et al. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263.
  • [6]. Bell, T. & Kalff, J. (2001).The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr. 46(5): 1243-1248.
  • [7]. Beversdorf, L.J., Miller, T.R. & McMahon, K.D. (2013).The Role of Nitrogen Fixation in Cyanobacterial Bloom Toxicity in a Temperate, Eutrophic Lake. PLoS ONE 8(2): e56103.
  • [8]. Buchan, A., Le Cleir, G.R., Gulvik, C.A. & González, J.M. (2014). Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Micro. 12: 686-698.
  • [9]. Carpenter, J.H. (1965). The accuracy of the Winkler method for dissolved oxygen. Limnol. Oceanogr. 10: 135-140.
  • [10]. Chisholm, S.W. (1992). Phytoplankton size. In: P.G. Falkowski, A.D. Woodhead & K. Vivirito (Eds.), Primary productivity and biogeochemical cycles in the sea (pp. 213-236). Boston, MA: Springer.
  • [11]. Cook., C., Vardaka, E. & Lanaras, T. (2004). Toxic cyanobacteria in Greek freshwaters, 1997-2000: Occurrence, toxicity and impacts in the Mediterranean region. Acta Hydrochim. Hydrobiol. 32: 107-124.
  • [12]. Fenchel, T. (1988). Marine plankton food chains. Annu. Rev. Ecol. Syst. 19: 19-38.
  • [13]. Gaedke, U. (1995). A comparison of whole-community and ecosystem approaches (biomass size distributions, food web analysis, network analysis, simulation models) to study the structure, function and regulation of pelagic food webs. J. Plankton Res. 17: 1273-1305.
  • [14]. Hadjisolomou, E., Stefanidis, K., Papatheodorou, G. & Papastergiadou, E. (2016). Assessing the Contribution of the Environmental Parameters to Eutrophication with the Use of the “PaD” and “PaD2” Methods in a Hypereutrophic Lake. Int. J. Environ. Res. Public Health 13(8): 764.
  • [15]. Horváth, H., Kovács, A.W., Riddick, C. & Présing, M. (2013). Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake. Eur. J. Phycol. 48(3): 278-286..
  • [16]. Kagalou, I., Papastergiadou, E. & Leonardos, I. (2008a). Long term changes in the eutrophication process in a shallow Mediterranean lake ecosystem of W. Greece: Response after the reduction of external load. J. Env. Managem. 87: 497-506.
  • [17]. Kagalou, I., Papadimitriou, T., Bacopoulos, V. & Leonardos, I. (2008b). Assessment of microcystins in lake water and the omnivorous fish (Carassiusgibelio, Bloch) in Lake Pamvotis (Greece) containing dense cyanobacterial bloom. Environ. Monit. Assess. 137: 185-195.
  • [18]. Kagalou, I., Papastergiadou, E., Tsimarakis, G. & Petridis, D.(2003) . Evaluation of the trophic state of Lake Pamvotis Greece, a shallow urban lake. Hydrobiologia 506: 745.
  • [19]. Kagalou, I., Tsimarakis, G. & Paschos, I. (2001). Water chemistry and biology in a shallow lake (Lake Pamvotis-Greece): Present state and perspectives. Global Nest: the Int. J. 3(2): 85-94.
  • [20]. Katsiapi, M., Stefanidou, N., Karayanni, H., Kormas, K.A. & Moustaka, M. (2011).Water blooms and their implications in the ecological water quality of Lake Pamvotis. In: 4th Congress of Mikrobiokosmos, 21-23 October 2011. Ioannina, Greece: Scientific Society of Mikrobiokosmos.
  • [21]. Kirchman, D.L. (1993). Statistical analysis of direct counts of microbial abundance. Handbook of Methods in Aquatic Microbial Ecology 117-119, Lewis Publishers, Boca Raton, FL, USA.
  • [22]. Kormas, K.A., Garametsi, V. & Nicolaidou, A. (2002). Size-fractionated phytoplankton chlorophyll in an Eastern Mediterranean coastal system (Maliakos Gulf, Greece). Helgol. Mar. Res. 56: 125.
  • [23]. Kotti, M., Vlessidis, A. & Evmiridis, N. (2000). Determination of phosphorous and nitrogen in thesediment of Lake Pamvotis (Greece). Int. J. Environ. An. Ch. 78(3-4): 455-467.
  • [24]. Koussouris, T.S., Diapoulis, A.C. & Photis, G.D. (1991). Evaluating the trophic status of a shallow polluted lake, Lake Ioannina, Greece. Toxicol. Environ. Chem. 31 (1):303-313 .
  • [25]. Labasque, T., Chaumery, C., Aminot, A. & Kergoat, G.(2004). Spectrophotometric Winkler determination of dissolved oxygen: reexamination of critical factors and reliability. Mar. Chem. 88(1-2): 53-60.
  • [26]. Lawrenz, E., Fedewa, J.E. & Richardson, T.L. (2011). Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. J. Applied Phycol. 23: 865-871.
  • [27]. Lee R.E. (2008). 2. Cyanobacteria. Phycology (pp. 31-79), Cambridge University Press, New York, NY, USA.
  • [28]. Li, Y., Liu, B., Liu, S. & Li, D. (2017). The trophic state of lake water regulates spatial-temporal variations of bloom-forming Microcystis. Chin. J. Ocean.Limnol. 35: 415-422.
  • [29]. Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S. et al. (2015). Ocean plankton. Determinants of community structure in the global plankton interactome. Science. 348(6237): 1262073.
  • [30]. Loisa, O., Kaaria, J., Laaksonlaita, J., Niemi, J., Sarvala, J. et al. (2015). From phycocyanin fluorescence to absolute cyanobacteria biomass: An application using in-situ fluorometer probes in the monitoring of potentially harmful cyanobacteria blooms. Water Pract. Technol.10: 695-698.
  • [31]. Lyu, H., Wang, Q., Wu, C., Zhu, L., Yin, B. et al. (2013). Retrieval of phycocyanin concentration from remote-sensing reflectance using a semi-analytic model in eutrophic lakes. Ecol. Inform. 18: 178-187.
  • [32]. Masson S., Pinel-Alloul, B. & Smith, V.H. (2000). Total phosphorus-chlorophyll a size fraction relationships in southern Québec lakes. Limnol. Oceanogr. 3: 732-740.
  • [33]. Mouillot, D., Spatharis, S., Reizopoulou, S., Laugier, T., Sabetta, L. et al. (2006). Alternatives to taxonomic-based approaches to assess changes in transitional water communities. Aquatic Conserv.: Mar. Freshw. Ecosyst. 16: 469-482.
  • [34]. Moustaka-Gouni, M. (1993). Phytoplankton succession and diversity in a warm monomictic relatively shallow lake: Lake Volvi, Macedonia, Greece. Hydrobiologia 249: 33-42.
  • [35]. Moustaka-Gouni, M., Vardaka, E., Michaloudi, E., Kormas, K.Ar., Tryfon, E. et al. (2006). Plankton food web structure in a eutrophic polymictic lake with a history in toxic cyanobacterial blooms. Limnol. Oceanogr. 51(1, part 2): 715-727.
  • [36]. OECD. (1982). Eutrophication of Waters.Monitoring, Assessment and Control. Paris: OECD.
  • [37]. Papadimitriou, T. (2010). Effects of Microcystins on aquatic organisms. Unpublished doctoral dissertation (In Greek), University of Ioannina, Greece.
  • [38]. Papadimitriou, T., Armeni, E., Stalikas, C.D., Kagalou, I. & Leonardos, I.D. (2012). Detection of microcystins in Pamvotis lake water and assessment of cyanobacterial bloom toxicity. Environ. Monit. Assess. 184(5): 3043-52.
  • [39]. Papastergiadou, E., Kagalou, I., Stefanidis, Retalis, K.A. & Leonardos, I. (2010). Effects of Anthropogenic Influences on the Trophic State, Land Uses and Aquatic Vegetation in a Shallow Mediterranean Lake: Implications for Restoration. Water Resour. Manag. 24: 415.
  • [40]. Parsons, T.R., Maita, Y. & Malli, C.M. (1984) Determination of chlorophylls and total carotenoids: Spectrophotometric method. In: A manual of chemical and biological methods for seawater analysis (pp. 101-104). Oxford, UK: Pergamon Press.
  • [41]. Porter, K.G., Feig, Y.S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25(5): 943-948.
  • [42]. Pyo, J.C., Pachepsky, Y., Baek, S.S., Kwon, Y.S., Kim, M.J. et al. (2017). Optimizing Semi-Analytical Algorithms for Estimating Chlorophyll-a and Phycocyanin Concentrations in Inland Waters in Korea. Remote Sens. 9(6): 542.
  • [43]. Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D.L. et al. (2008). Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens. Environ. 112: 4009-4019.
  • [44]. Romero, J.R., Kagalou, I., Imberger, J. Hela, D., Kotti, M. et al. (2002). Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration. Hydrobiologia. 474: 91.
  • [45]. Smith, V.H., Tilman, G.D. & Nekola, J.C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100: 179-196.
  • [46]. Siegelman, H. & Kycia, J.H. (1978). Alga biliproteins. In: J.A. Hellebust & J.S. Craigie (Eds.), Handbook of phycological methods: physiological and biochemical methods (pp. 72-78). Cambridge, UK: Cambridge University Press.
  • [47]. Simis, S.G., Peters, S.W.M. & Gons, H.J. (2005). Remote sensing of the cya no bacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr. 50(1): 237≥245.
  • [48]. Søndergaard, M. (1997). Bacteria and dissolved organic carbon in lakes. In Freshwater Biology. Priorities and Development in Danish research (pp. 138-161). København: Gad.
  • [49]. Song, K., Li, L., Li, S., Tedesco, L., Hall, B. et al. (2012). Hyperspectral retrieval of phycocyanin in potable water sources using genetic algorithm - partial least squares (GA-PLS) modeling. Inter. J. Appl. Earth Obs. Geoinf. 18: 368-385.
  • [50]. Sprules, W.G. & Munawar, M. (1986). Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci. 43: 1789-1794.
  • [51]. Stockner, J.G. & Shortreed, K.S. (1991). Autotrophic picoplankton: Community composition, abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory lakes. Int. Rev. Gesamten Hydrobiol. 76: 581-601.
  • [52]. Szelag-Wasielewska, E. (1997). Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia 342/343: 79-85.
  • [53]. Takamura, N. & Nojiri, Y. (1994). Picophytoplankton biomass in relation to lake trophic status and the TN:TP ratio of lake water in Japan. J. Phycol. 30: 439-444.
  • [54]. Tilzer, M.M. (1988). Secchi disk-chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia. 162: 163-171.
  • [55]. Vardaka, E., Moustaka-Gouni, M., Cook, C.M. & Lanaras T.(2005). Cyanobacterial blooms and water quality in Greek waterbodies. J. Appl. Phycol. 17: 391.
  • [56]. Wang, G., Cao, W., Wang, G. & Zhou, W. (2013). Phytoplankton size class derived from phytoplankton absorption and chlorophyll-a concentrations in the northern South China Sea. Chin. J. Ocean. Limnol. 31: 750.
  • [57]. Wang, J., Shi, R. & Gao, W. (2014). Retrieval of phycocyanin concentration in the eutrophic Taihu Lake. In Proc. of SPIE Remote Sensing and Modeling of Ecosystems for Sustainability XI, 92210Z, 8 October 2014. San Diego, California, United States.
  • [58]. Watson, S. & McCauley, E. (1988).Contrasting patterns of net- and nanoplankton production and biomass among lakes. Can. J. Fish. Aquat. Sci. 45: 915-920.
  • [59]. Watson, S.B., McCauley, E. & Downing, J.A. (1997). Patterns in phytoplankton taxonomic composition across temperate lakes of different nutrient status. Limnol. Oceanogr. 42: 487-495.
  • [60]. Wetzel, R.G. & Likens, G. (2000). Composition and biomass of phytoplankton. In Limnological Analysis (pp. 147-174). Springer, New York, NY.
  • [61]. Ye, L.L., Wu, X.D., Liu, B., Yan, D.Z. & Kong, F.X. (2014). Dynamics of dissolved organic carbon in eutrophic Lake Taihu and its tributaries and their implications for bacterial abundance during autumn and winter. J. Freshw. Ecol. 30(1): 129-142.
  • [62]. Zhu, Y., Chen, X.B., Wang, K.B., Li. Y.X., Bai, K.Z. et al. (2007). A simple method for extracting C-phycocyanin from Spirulina platensis using Klebsiella pneumonia. App. Microb. Biotech. 74: 244-248.
  • [63]. Zimba, P.V. (2012). An improved phycobilins extraction method. Harmful Algae 17: 35-39.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c9f1d38-5adb-4507-aff6-13f273c55d27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.