PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effects of Niobium on the Bioactivity of Ni-Ti-Al-Nb Shape Memory Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work aims to analyze the effects of niobium on the bioactivity of a titanium, nickel, aluminum, and niobium alloy obtained by the Plasma Skull Push Pull process (PSPP). Titanium alloys, such as NiTinol (NiTi), are metallic biomaterials that have wide application in health and surgical prostheses. In this work the microstructural and bioactivity characteristics of the alloys are evaluated. The addition of aluminum improves alloy ductility and reduces its cost. The addition of niobium favors the hydroxyapatite nucleation. Therefore, the addition of the combination of the two elements contributes to lower cost and better alloy bioactivity.
Słowa kluczowe
Twórcy
  • Universidade Federal de Itajubá, Itabira, MG, Brazil
  • Universidade Federal de Itajubá, Itabira, MG, Brazil
  • Universidade Federal de Itajubá, Itabira, MG, Brazil
  • Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil
  • Universidade Federal de Itajubá, Itabira, MG, Brazil
  • Universidade Federal de Itajubá, Itabira, MG, Brazil
Bibliografia
  • [1] Y. Kirmanidou, M. Sidira, M. E. Drosou, V. Bennani, A. Bakopoulou, A. Tsouknidas, K. Michalakis, Biomed Res. Int. 2016, 2908570 (2016) pages. DOI: http://dx.doi.org/10.1155/2016/2908570
  • [2] G. A. Longhitano, M. A. Larosa, A. L. J. Munhoz, C. A. C. Zavaglia, M. C. F. Ierardi, Mater. Res-Ibero-Am. J. 18, 838-842 (2015). DOI: http://dx.doi.org/10.1590/1516-1439.014415
  • [3] L. Kunčická, R. Kocich, T. C. Lowe, Prog. Mater. Sci. 88, 232-280 (2017). DOI: https://doi.org/10.1016/j.pmatsci.2017.04.002
  • [4] J. R. Davis, Handbook of Materials for medical devices, ASM International (2006).
  • [5] G. Karthik, B. Kashyap, T. R. Prabhu, Mater. Today-Proc. 4, 3581-3589 (2017). DOI: https://doi.org/10.1016/j.matpr.2017.02.250
  • [6] D. C. Lagoudas, Shape memory alloys: modeling and engineering applications,1st ed. New York: Springer (2010).
  • [7] P. S. Lobo, J. Almeida, L. Guerreiro, Procedia engineer. 114, 776-783 (2015). DOI: https://doi.org/10.1016/j.proeng.2015.08.025
  • [8] J. Frenzel, E. P. George, A. Dlouhy, Ch. Somsen, M. F. X. Wagner, G. Eggeler, Acta Mater. 58, 3444-3458 (2010). DOI: https://doi.org/10.1016/j.actamat.2010.02.019
  • [9] D. V. Shtansky, SHS Materials in Medicine, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, 325-327 (2017).
  • [10] M. J. Garcia-Ramirez, R. Lopez-Sesenes, I. Rosales-Cadena, J. G. Gonzalez-Rodriguez, J. Mater. Sci. Technol. 7, 223-230 (2018).DOI: https://doi.org/10.1016/j.jmrt.2017.07.003
  • [11] B. E. Franco, J. Ma, B. Loveall, G. A. Tapia, K. Karayagiz, J. Liu, A. Elwany, R. Arroyave, I. Karaman, Scientific Reports 7.1, 1-12. (2017). DOI: https://doi.org/10.1038/s41598-017-03499-x
  • [12] H. Hou, Y. Tang, R. F. Hamilton, M. W. Horn, J. Vac. Sci. Technol. A., 35, 040601 (2017). DOI: https://doi.org/10.1116/1.4983011
  • [13] G. D. Travassos, L. F. A. Rodrigues, C. J. de Araújo, J. Braz. Soc. Mech. Sci. 39, 1269-1275 (2017). DOI: https://doi.org/10.1007/s40430-016-0617-4
  • [14] N. Duraipandy, K. M. Syamala, N. Rajendran, Appl. Surf. Sci. 427, 1166-1181 (2018). DOI: https://doi.org/10.1016/j.apsusc.2017.08.221
  • [15] S. A. Pauline, N. Rajendran, Ceram. int. 43, 1731-1739 (2017). DOI: https://doi.org/10.1016/j.ceramint.2016.08.207
  • [16] I. C. Conceição, L. C. M. Dias, A. M. Fernandes, R. L. P. Teixeira, F. Moura, H. L. Hasegawa, J. C. de Lacerda, J. C.E. C. 3, 1038-1050 (2017). DOI: https://doi.org/10.18540/jcecv13iss8pp1038-1050
  • [17] R. L. P. Teixeira, G. C. D. Godoy, M. M. Pereira, Mater. Res-Ibero-Am. J. 7, 299-303 (2004). doi: http://dx.doi.org/10.1590/S1516-14392004000200013
  • [18] NCCLS, Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Eighth Edition, NCCLS document M2-A8 [ISBN 1-56238-485-6], USA (2003).
  • [19] ICDD, PDF 9-432(database), Kabekkodu, S., ed., Newtown Square: Int. Centre Diffraction Data (2010).
  • [20] C. J. Wilcock, G. P. Stafford, C. A. Miller, Y. Ryabenkova, M. Fatima, P. Gentile, G. Möbus, P. V. Hatton, J. Biomed. Nanotechnol. 13, 1168-1176 (2017). DOI: https://doi.org/10.1166/jbn.2017.2387
  • [21] D. Siek, A. D. Ślósarczyk, A. Przekora, A. Belcarz, A. Zima, G. Ginalska, J. Czechowska, Ceram. int. 43, 13997-14007 (2017). DOI: https://doi.org/10.1016/j.ceramint.2017.07.131
  • [22] International Standard: Biological Evaluation of Medical Devices Part 5: Tests for Cytotoxicity: in vitro methods. ISO 10993-5 (2009).
  • [23] C. de Souza, R. L. P. Teixeira, J. C. de Lacerda, C. R. Ferreira, C. H. S. B. Teixeira, V. T. Signoretti. Polímeros 28.3, 226-230 (2018). DOI: https://dx.doi.org/10.1590/0104-1428.015816
  • [24] J. Málek, F. Hnilica, J. Veselý, B. Smola, R. Medlín, J. Mech. Behav. Biomed. 75, 252-261 (2017). DOI: https://doi.org/10.1016/j.jmbbm.2017.07.032
  • [25] T. W. Duerig, A. R. Pelton, Ti-Ni shape memory alloys, Materials Properties Handbook, Titanium Alloys, Materials Park. OH: American Society for Metals, 1035-1048 (1994)
  • [26] G. Karthik, B. Kashyap, T. R. Prabhu, Mater. Today-Proc. 4, 3581-3589 (2017). DOI: https://doi.org/10.1016/j.matpr.2017.02.250
  • [27] M. Iijima, W.A. Brantley, I. Kawashima, H. Ohno, W. Guo, Y. Yonekura, I. Mizoguchi, Biomaterials 25, 171-176 (2004). DOI: https://doi.org/10.1016/S0142-9612(03)00473-3
  • [28] T. A. Thayer, M. D. Bagby, R. N. Moore, R. J. DeAngelis, Am. J. Orthod. Dentofac. 107, 604-612 (1995). DOI: https://doi.org/10.1016/S0889-5406(95)70103-6.
  • [29] B. L. Pereira, C. M. Lepienski, I. Mazzaro, N. K. Kuromoto, Mater. Sci. Eng. C. 77, 1235-1241 (2017). DOI: https://doi.org/10.1016/j.msec.2016.10.073
  • [30] K. K. Carneiro, T. P. Araujo, E. M. Carvalho, M. M. Meier, A. Tanaka, C. N. Carvalho, J. Bauer, J. Mech. Behav. Biomed. 78, 188-195 (2018). DOI: https://doi.org/10.1016/j.jmbbm.2017.11.016
  • [31] M. Tamai, K. Isama, R. Nakaoka, T. Tsuchiya, J. Artif. Organs. 10, 22-28 (2007). DOI: https://doi.org/10.1007/s10047-006-0363-y
  • [32] P. W. Brown, B. Constantz, hydroxyapatite and related materials, CRC press (2017).
  • [33] S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Biomaterials 23, 1065-1072 (2002). DOI: https://doi.org/10.1016/S0142-9612(01)00218-6
Uwagi
1. The authors would like to acknowledge the Foundation for Research Support of the State of Minas Gerais (FAPEMIG), the Federal University of Itajubá (UNIFEI) - Itabira Campus, the Federal Center of Technological Education of Minas Gerais - CEFET-MG for the availability of laboratory technical resources and the Metals Group from UNIFEI, Itabira Campus.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c9b4341-df5f-44ef-b223-1271e89ecd15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.