Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Spirulina – why is it called super food?
Języki publikacji
Abstrakty
Arthrospira (spirulina) wykorzystywana jest jako dodatek do diety ze względu na wysoką wartość odżywczą i bezpieczeństwo stosowania. Jest rodzajem należących do rzędu Oscillatoriales swobodnie pływających sinic. W przemyśle spożywczym wykorzystuje się głównie dwa gatunki: Arthrospira platensis i Arthrospira maxima. Spirulina, znana głównie ze względu na wysoką zawartość białka (około 80% w przeliczeniu na suchą masę), jest bogatym źródłem wielu związków biologicznie czynnych, w tym chlorofili i karotenoidów stosowanych m.in. jako barwniki w przemyśle spożywczym. Pigmenty te mają potencjalne korzyści zdrowotne dla organizmu wiążące się ze wzmocnieniem układu odpornościowego i zmniejszeniem ryzyka rozwoju przewlekłych chorób zwyrodnieniowych, chorób sercowo-naczyniowych i niektórych rodzajów nowotworów. Ponadto spirulina jest bogata w aminokwasy egzogenne, witaminy A, E i z grupy B, czy kwasy tłuszczowe, które wpływają na: obniżenie ciśnienia, zapobiegają miażdżycy i udarowi mózgu, przyspieszają redukcję tkanki tłuszczowej i obniżają poziom cholesterolu. Wykorzystanie spiruliny w przemyśle spożywczym nie ogranicza się tylko do barwienia żywności. Obecnie na rynku dostępne są między innymi ciastka, lody, jogurty oraz pieczywo z dodatkiem spiruliny. Jej dodatek może znacznie opóźnić proces utleniania lipidów i zmniejszyć populację niepożądanych drobnoustrojów, co skutkuje wydłużonym okresem przydatności do spożycia.
Arthrospira (spirulina) is used as an addition to the diet due to its high nutritional value and safety of use. It is a genus of free-floating cyanobacteria belonging to the order of Oscillatoriales. Two species are used in the food industry: Arthrospira platensis and Arthrospira maxima. Spirulina is mainly known for its high protein content, which is around 80% of dry matter. Spirulina is a rich source of many compounds, such as chlorophylls and carotenoids, which are used in the food industry as dyes. Spirulina-derived pigments have the added benefit of potential health benefits for the body, and their consumption has been shown to boost the immune system and reduce the risk of developing chronic degenerative diseases, cardiovascular disease, and certain types of cancer. Moreover, spirulina is rich in essential amino acids, vitamins A, B, E and fatty acids. The presence of these compounds makes spirulina lower blood pressure, prevents atherosclerosis and stroke, accelerates the reduction of body fat and lowers cholesterol. The use of spirulina in the food industry is not limited to food coloring. Currently, the market includes, among others, cookies, ice cream, yoghurts and bread with the addition of spirulina. Its addition can significantly delay the lipid oxidation process and reduce the number of undesirable microorganisms, which results in an extended shelf life.
Wydawca
Czasopismo
Rocznik
Tom
Strony
10--16
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
autor
- Katedra Nauk o Zwierzętach Monogastrycznych, Pracownia Żywienia Zwierząt i Żywności, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
autor
- Katedra Nauk o Zwierzętach Monogastrycznych, Pracownia Żywienia Zwierząt i Żywności, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Bibliografia
- [1] Abbaspour-Gilandeh Y., A. Jahanbakhshi, M. Kaveh. 2019. „Prediction kinetic, energy, and exergy of quince under hot air dryer using ANNs and ANFIS”. Food Science and Nutrition 8 (1) : 594-611, DOI:10.1002/fsn3.1347.
- [2] Al Jumayi H.A.R.O. 2019. „Enrich nutritional value for baldy bread fortified with Spirulina (Arthrospira platensis) microalgae”. Life Sciences 16 (9) : 32-41, DOI:10.7537/marslsj160919.04.
- [3] Alshuniaber M.A., R. Krishnamoorthy, W.H. Al Qhtani. 2021. „Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens”. Saudi Journal of Biological Sciences 28 (1) : 459-464, DOI:10.1016/j.sjbs.2020.10.029.
- [4] Beheshtipour H., A.M. Mortazavian, P. Haratian. 2012. „Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties”. European Food Research and Technology 235 : 719-728, DOI:10.1007/s00217-012-1798-4.
- [5] Cai B., X. Yi, Q. Han, J. Pan, H. Chen, H. Sun, P. Wan. 2022. „Structural characterization of oligosaccharide from Spirulina platensis and its effect on the faecal microbiota in vitro”. Food Science and Human Wellness 11 (1) : 109-118, DOI:10.1016/j.fshw.2021.07.012.
- [6] Chen Y., Y.C. Liao, J. Y. Huang, Y.A. Kung, C.C. Chiueh. 2021. „Hot water extract of Arthrospira maxima (AHWE) has broad-spectrum antiviral activity against RNA virus including coronavirus SARS-CoV2, and the antivirus spray application”. bioRxiv DOI:10.1101/2021.06.06.446935.
- [7] Costa J.A.V., B.C. Bastos Freitas, G.M. Rosa, L. Moraes, M.G. Morais, B.G. Mitchell. 2019. „Operational and economic aspects of Spirulina-based biorefinery”. Bioresource Technology 292 : 121946, DOI:10.1016/j.biortech. 2019.121946.
- [8] da Rosa G.M., L. Moraes, B.B. Cardias, M.R. de Souza, J.A. Costa. 2015. „Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle”. Bioresource Technology 192 : 321-327, DOI:10.1016/j.biortech.2015.05.020.
- [9] de Freitas B.A., A.S. Silva, P.B. Ferreira, R.L. Tavares, M.M. Neto. 2020. „Spirulina platensis prevents oxidative stress and inflammation promoted by strength training in rats: dose-response relation study”. Scientific Reports 10 (1) : 6382, DOI:10.1038/s41598-020-63272-5.
- [10] de Morais E.G., J.I. Druzian, I.L. Nunes, M.G. de Morais, J.A.V. Costa. 2018. „Glycerol increases growth, protein production and alters the fatty acids profile of Spirulina (Arthrospira) sp LEB 18”. Process Biochemistry 76 : 40-45, DOI:10.1016/j.procbio.2018.09.024.
- [11] de Souza da Silva S.P., D. Perrone, A.F. do Valle. 2022. „Optimization of Arthrospira maxima cultivation for biomass and protein production and biomass technological treatment to color, flavor, and aroma masking for addition to food products”. Journal of Applied Phycology 34 : 65-80, DOI:10.1007/s10811-021-02601-1.
- [12] Diraman H., E. Koru, H. Dibeklioglu. 2009. „Fatty acid profile of spirulina platensis used as a food supplement”. The Israeli Journal of Aquaculture – Bamidgeh 61 (2) : 134-142, DOI:10.46989/001c.20548.
- [13] El Baky H.H.A., G.S. El Baroty, E.M. Mostafa. 2020. „Optimization growth of spirulina (Arthrospira) platensis in photobioreactor under varied nitrogen concentration for maximized biomass, carotenoids and lipid contents”. Recent Patents on Food, Nutrition & Agriculture 11 (1) : 40-48, DOI:10.2174/2212798410666181227125229.
- [14] Elbialy Z.I., D.H. Assar, A. Abdelnaby, S.A. Asa, E.Y. Abdelhiee, S.S. Ibrahim, M.M. Abdel-Daim, R. Almeer, A. Atiba. 2021. „Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-s1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model”. Biomedicine & Pharmacotherapy 137 : 111349, DOI:10.1016/j.biopha.2021.111349.
- [15] FAO. Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food Nutr Pap. 2013, 92 : 1-66.
- [16] Ferdouse A., S. Leng, T. Winter, H. Aukema. 2019. „Dietary n-6 and n-3 PUFA alter the free oxylipin profile differently in male and female rat hearts”. British Journal of Nutrition 122 (3) : 252-261, DOI:10.1017/S0007114519001211.
- [17] Ferreira A., I. Guerra, M. Costa, J. Silva, L. Gouveia. 2021. „Future perspectives of microalgae in the food industry”. Cultured Microalgae for the Food Industry 15 : 387-433, DOI:10.1016/b978-0-12-821080-2.00008-3.
- [18] Frega N., M. Mozzon, G. Lercker. 1999. „Effects of free fatty acids on oxidative stability of vegetable oil”. Journal of the American Oil Chemists’ Society 76 (1) : 325-329, DOI:10.1007/s11746-999-0239-4.
- [19] Gemma C., M.H. Mesches, B. Sepesi, K. Choo, D.B. Holmes, P.C. Bickford. 2002. „Diets enriched in foods with high antioxidant activity reverse age-induced decreases in cerebellar β-adrenergic function and increases in proinflammatory cytokines”. Journal of Neuroscience 22 (14) : 6114-6120, DOI: 10.1523/JNEUROSCI.22-14-06114.2002.
- [20] Ghaem Far Z., S. Babajafari, J. Kojuri, S. Mohammadi, M. Nouri, P. Rostamizadeh, M.H. Rahmani, M. Azadian, E. Ashrafi-Dehkordi, A. Zareifard, R. Golchin Vafa, S.M. Mazloomi. 2021. „Antihypertensive and antihyperlipemic of spirulina (Arthrospira platensis) sauce on patients with hypertension: A randomized triple-blind placebo-controlled clinical trial”. Phytotherapy Research 35 (11) : 6181-6190, DOI:10.1002/ptr.7254.
- [21] Ghosh S., S. Das, I. Ahmad, H. Patel. 2021. „In silico validation of anti-viral drugs obtained from marine sources as a potential target against SARS-CoV-2 Mpro”. Journal of the Indian Chemical Society 98 (12) : 100272, DOI: 10.1016/j.jics.2021.100272.
- [22] Guo X., K. Li, J. Li, D. Li. 2019. „Effects of EPA and DHA on blood pressure and inflammatory factors: a meta-analysis of randomized controlled trials”. Critical Reviews in Food Science and Nutrition 59 (20) : 3380-3393, DOI:10.1080/10408398.2018.1492901.
- [23] Hannan J., P. Ansari, S. Azam, P.R. Flatt, Y.H.A. Wahab. 2020. „Effects of Spirulina platensis on insulin secretion, DPP-IV activity and both carbohydrate digestion and absorption indicate potential as an adjunctive therapy for diabetes”. British Journal of Nutrition 124 (10) : 1021-1034, DOI:10.1017/S0007114520002111.
- [24] Jarosz M., E. Rychlik, K. Stoś, J. Charzewska. 2020. „Normy żywienia dla populacji Polski i ich zastosowanie”. Warszawa, Poland: Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny, 68-437.
- [25] Kahraman G., K.S. Ozdemir. 2021. „Effects of black elderberry and spirulina extracts on the chemical stability of cold pressed flaxseed oil during accelerated storage”. Food Measure 15 : 4838-4847, DOI:10.1007/s11694-021-01004-7.
- [26] Koutsoumanis K., A. Allende, A. Alvarez-Ord, D. Bolton, S. Bover-Cid, M. Chemaly, R. Davies, A. De Cesare, F. Hilbert, R. Lindqvist, M. Nauta, L. Peixe, G. Ru, M. Simmons, P. Skandamis, E. Suffredini, P.S. Cocconcelli, P.S. Fernandez Escamez, M. Prieto-Maradona, A. Querol, L. Sijtsma, J. Evaristo Suarez, I. Sundh, J. Vlak, F. Barizzone, M. Hempen, L. Herman. 2022. „Statement on the update of the list of QPS-recommended biologicalagents intentionally added to food or feed as notified to EFSA 15: suitability of taxonomic units notifiedto EFSA until September 2021”. EFSA Journal 20 (1) : 7045-7085, DOI:10.2903/j.efsa.2022.704.
- [27] Kuhad R.C., A. Singh, K.K. Tripathi. 1997. „Microorganisms as an alternative source of protein”. Nutrition Reviews 55 (3) : 65-75, DOI:10.1111/j.1753-4887.1997.tb01599.x.
- [28] Lafarga T., A. Sanchez-Zurano, S. Villaro, A. Morillas-Espana, G. Acien. 2021. „Industrial production of spirulina as a protein source for bioactive peptide generation”. Trends in Food Science & Technology 116 (1) : 176-185, DOI: 10.1016/j.tifs.2021.07.018.
- [29] Lafarga T., M.J. Fernandez-Sevilla, C. Gonzalez-Lopez, G.F. Acien-Fernandez. 2020. „Spirulina for the food and functional food industries”. Food Research International 137 : 109356, DOI:10.1016/j.foodres.2020.109356.
- [30] Larson L.M., S. Cyriac, E.W. Djimeu, M.N.N. Mbuya, L.M. Neufeld. 2021. „Can double fortification of salt with iron and iodine reduce anemia, iron deficiency anemia, iron deficiency, iodine deficiency, and functional outcomes? Evidence of efficacy, effectiveness, and safety”. The Journal of Nutrition 151 (1) : 15S-28S, DOI:10.1093/jn/nxaa192.
- [31] Li Y., A. Hruby, A.M. Bernstein, S.H. Ley, D.D. Wang, S.E. Chiuve, L. Sampson, K. Rexrode, E.B. Rimm, W.C. Willett, F.B. Hu. 2015. „Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study”. Journal of the American College of Cardiology 66 (14) : 1538-1548, DOI:10.1016/j.jacc.2015.07.055.
- [32] Liestianty D., I. Rodianawati, R.A. Arfah, A. Assa. 2019. „Nutritional analysis of spirulina sp to promote as superfood candidate”. IOP Conf. Series: Materials Science and Engineering 509 : 012031, DOI:10.1088/1757-899X/509/1/012031.
- [33] Lopez-Rodriguez A., J. Mayorga, D. Flaig, G. Fuentes, J. Cotabarren, W.D. Obregon, P.I. Gomez. 2021. „Comparison of two strains of the edible cyanobacteria Arthrospira: biochemical characterization and antioxidant properties”. Food Bioscience 42 : 101144, DOI:10.1016/j.fbio.2021.101144.
- [34] Mahmoud Y.I., A.M.M. Shehata, N.H. Fares, A.A. Mahmoud. 2021. „Spirulina inhibits hepatocellular carcinoma through activating p53 and apoptosis and suppressing oxidative stress and angiogenesis”. Life Sciences 265 : 118827, DOI:10.1016/j.lfs.2020.118827.
- [35] Manali K.M., R. Arunraj, T. Kumar, M. Ramya. 2016. „Detection of microcystin producing cyanobacteria in Spirulina dietary supplements using multiplex HRM quantitative PCR”. Journal of Applied Phycology 29 (3) : 1279-1286, DOI:10.1007/s10811-016-1011-4.
- [36] Markova I., R. Koničkova, K. Vaňkova. 2020. „Anti-angiogenic effects of the blue-green alga Arthrospira platensis on pancreatic cancer”. Journal of Cellular and Molecular Medicine 24 : 2402-2415, DOI:10.1111/jcmm.14922.
- [37] Martelli F., M. Cirlini, C. Lazzi, E. Neviani, V Bernini. 2021. „Solid-state fermentation of Arthrospira platensis to implement new food products: evaluation of stabilization treatments and bacterial growth on the volatile fraction”. Foods 10 (1) : 67-85, DOI:10.3390/foods10010067.
- [38] Martinez-Galero E., R. Perez-Pasten, A. Perez-Juarez, L. Fabila-Castillo, G. Gutierrez-Salmean, G. Chamorro. 2016. „Preclinical antitoxic properties of Spirulina (Arthrospira)”. Pharmaceutical Biology 54 (8) : 1345-1353, DOI:10.31 09/13880209.2015.1077464.
- [39] Meng H., N.R. Matthan, D. Wu, L. Li, J. Rodriguez-Morato, R. Cohen, J.M. Galluccio, G.G. Dolnikowski, A.H. Lichtenstein. 2019. „Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women – randomized crossover trial”. The American Journal of Clinical Nutrition 110 (2) : 305-315, DOI:10.1093/ajcn/nqz095.
- [40] Metherel A.H., R.P. Bazinet. 2019. „Updates to the n-3 polyunsaturated fatty acid biosynthesis pathway: DHA synthesis rates, tetracosahexaenoic acid and (minimal) retroconversion”. Progress in Lipid Research 76 (1) : 1-41, DOI:10.1016/j.plipres.2019.101008.
- [41] Moradi S., M. Zobeiri, A. Feizi, C.T. Clark, M.H. Entezari. 2021. „The effects of spirulina (Arthrospira platensis) supplementation on anthropometric indices, blood pressure, sleep quality, mental health, fatigue status and quality of life in patients with ulcerative colitis: a randomised, double-blinded, placebo-controlled trial”. International Journal of Clinical Practice 75 : e14472, DOI:10.1111/ijcp.14472.
- [42] Nascimento Sassano C.E., L.A. Gioielli, A. Converti, I. de Oliveira Moraes, S. Sato, J.C.M. de Carvalho. 2014. „Urea increases fed-batch growth and γ-linolenic acid production of nutritionally valuable Arthrospira (Spirulina) platensis cyanobacterium”. Engineering in Life Sciences 14 : 530-537, DOI:10.1002/elsc.201400020.
- [43] Nazari M.T., C.V.T. Rigueto, A. Rempel, L.M. Colla. 2021. „Harvesting of Spirulina platensis using an eco-friendly fungal bioflocculant produced from agro-industrial by-products”. Bioresource Technology 322 (1) : 1-8, DOI:10.1016/j.biortech.2020.124525.
- [44] Nosratimovafagh A., A.E. Fereidouni, F. Krujatz. 2022. „Modeling and optimizing the effect of light color, sodium chloride and glucose concentration on biomass production and the quality of Arthrospira platensis using response surface methodology (RSM)”. Life 12 (3) : 371-390, DOI:10.3390/life12030371.
- [45] Papadimitriou T., K. Kormas, E. Vardaka. 2021. „Cyanotoxin contamination in commercial Spirulina food supplements”. Journal of Consumer Protection and Food Safety 16 (3) : 227-235, DOI:10.1007/s00003-021-01324-2.
- [46] Paquette M., S. Bernard, I. Ruel, D.W. Blank, J. Genest, A. Baass. 2019. „Diabetes is associated with an increased risk of cardiovascular disease in patients with familial hypercholesterolemia”. The Journal of Clinical Lipidology 13 (1) : 123-128, DOI:10.1016/j.jacl.2018.09.008.
- [47] Paula da Silva S., A. Ferreira do Valle, D. Perrone. 2021. „Microencapsulated Spirulina maxima biomass as an ingredient for the production of nutritionally enriched and sensorially well-accepted vegan biscuits”. LWT - Food Science and Technology 142 : 110997, DOI:10.1016/j.lwt.2021.110997.
- [48] Przysławski J. 1991. „Nutritional value of fats consumed in daily food rations by various population groups in great Poland. II. Fats in food rations of primary school children”. Acta Alimentaria Polonica 17 (3) : 251-258.
- [49] Ragaza J.A., M.S. Hossain, K.A. Meiler, S.F. Velasquez, V. Kumar. 2020. „A review on Spirulina: alternative media for cultivation and nutritive value as an aquafeed”. Reviews in Aquaculture 12 : 2371-2395, DOI:10.1111/raq.12439.
- [50] Ramirez-Rodrigues M.M., C. Estrada-Beristain, J. Metri-Ojeda, A. Perez-Alva, D.K. Baigts-Allende. 2021. „Spirulina platensis protein as sustainable ingredient for nutritional food products development”. Sustainability 13 : 6849, DOI:10.3390/su13126849.
- [51] Rao A.V., L.G. Rao. 2007. „Carotenoids and human health”. Pharmacological Research 55 (3) : 207-216, DOI:10.1016/j.phrs.2007.01.012.
- [52] Rhodes C.J., J. Wharton, L. Howard, J.S.R. Gibbs, A. Vonk-Noordegraaf, M.R. Wilkins. 2011. „Iron deficiency in pulmonary arterial hypertension: a potential therapeutic target”. European Respiratory Journal 38 (6): 1453-1460, DOI:10.1183/09031936.00037711.
- [53] Richard D., K. Kefi, U. Barbe, P. Bausero, F. Visioli. 2008. „Polyunsaturated fatty acids as antioxidants”. Pharmacological Research 57 (6) : 451-455, DOI:10.1016/j.phrs.2008.05.002.
- [54] Rodrigues Almeida L.M., L.F. da Silva Cruz, B.A. Souza Machado, I. Larroza Nunes, J.A.V. Costa, E. de Souza Ferreira, P.V.F. Lemos, J.I. Druzian, C.O. de Souza. 2021. „Effect of the addition of Spirulina sp. biomass on the development and characterization of functional food” Algal Research 58 : 102387, DOI:10.1016/j.algal.2021.102387.
- [55] Rodriguez-Concepcion M., J. Avalos, M.L. Bonet, A. Boronat, L. Gomez-Gomez, D. Hornero-Mendez, M.C. Limon, A.J. Melendez-Martinez, B. Olmedilla-Alonso, A. Palou, J. Ribot, M.J. Rodrigo, L. Zacarias, C. Zhu. 2018. „A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health”. Progress in Lipid Research 70 : 62-93, DOI:10.1016/j.plipres.2018.04.004.
- [56] Roghayeh S., G. Kavoosi, M. Noroozi. 2021. „Manipulation of Chlorella vulgaris polyunsaturated ω‐3 fatty acid profile by supplementation with vegetable amino acids and fatty acids”. Phycological Research 69 (2) : 116-123.
- [57] Roy-Lachapelle A., M. Solliec, M. Bouchard, S. Sauve. 2017. „Detection of cyanotoxins in algae dietary supplements”. Toxins 9 (3) : 76, DOI:10.3390/toxins9030076.
- [58] Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2015/2283 z dnia 25 listopada 2015 r. w sprawie nowej żywności, zmieniające rozporządzenie Parlamentu Europejskiego i Rady (UE) nr 1169/2011 oraz uchylające rozporządzenie (WE) nr 258/97 Parlamentu Europejskiego i Rady oraz rozporządzenie Komisji (WE) nr 1852/2001
- [59] Seghiri R., J. Legrand, R. Hsissou, A. Essamri. 2021. „Comparative study of the impact of conventional and unconventional drying processes on phycobiliproteins from Arthrospira platensis”. Algal Research 53 : 102165, DOI:10.1016/j.algal.2020.102165.
- [60] Seghiri R., M. Kharbach, A. Essamri. 2019. „Functional composition, nutritional properties, and biological activities of Moroccan spirulina microalga”, Journal of Food Quality 2019 : 1-11, DOI:10.1155/2019/3707219.
- [61] Shioji Y., T. Kobayashi, T. Yoshida, T. Otagiri, K. Onoda, Y. Yoshioka, T. Sasada, N. Miyoshi. 2021. „Nitrogen balance and bioavailability of amino acids in spirulina diet-fed wistar rats”. Journal of Agricultural and Food Chemistry 69 (46) : 13780-13786, DOI:10.1021/acs.jafc.1c04840.
- [62] Sommella E., G.M. Conte, E. Salviati, G. Pepe, A. Bertamino, C. Ostacolo, F. Sansone, F.D. Prete, R.P. Aquino, P. Campiglia. 2018. „Fast profiling of natural pigments in different spirulina (Arthrospira platensis) dietary supplements by DI-FT-ICR and evaluation of their antioxidant potential by pre-column DPPH-UHPLC assay”. Molecules 23 : 1152, DOI:10.3390/molecules23051152.
- [63] Sotiroudis T.G., G.T. Sotiroudis. 2013. „Health aspects of Spirulina (Arthrospira) microalga food supplement”. Journal of the Serbian Chemical Society 78 (3) : 395-405, DOI:10.2298/JSC121020152S.
- [64] Tiepo C., F. Gottardo, L. Mortari, C. Bertol, C. Reinehr, L. Colla. 2021. „Addition of Spirulina platensis in handmade ice cream: Phisicochemical and sensory effects”. Brazilian Journal of Development 7 : 88106-88123, DOI:10.34117/bjdv7n9-121.
- [65] URL 1. https://webgate.ec.europa.eu/fip/novel_food_catalogue/# (dostęp: 20.02.2022 r.).
- [66] URL 2. https://www.pngwing.com/en/ (dostęp: 20.02.2022 r.).
- [67] Uyttendaele M., E. Franz, O. Schluter. 2016. „Food safety, a global challenge”. International Journal of Environmental Research and Public Health 13 (1) : 67-73, DOI:10.3390/ijerph13010067.
- [68] Vo T.S., D.H. Ngo, S.K. Kim. 2015. „Nutritional and pharmaceutical properties of microalgal Spirulina”. W: Handbook of Marine Microalgae. USA: Elsevier.
- [69] Zhang W., Q. Wu, J. Wu. 2013. „The nutrition health value and research progress of spirulina”. Food Fermentation Technology 49 : 89192.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c934558-460d-4551-a221-ccbfb8d125ac