PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Microwave-aided reactions of aniline derivatives with formic acid : inquiry-based learning experiments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The synthesis of amides belongs to traditional experimental tasks not only in organic chemistry exercises at universities but also at chemically focused secondary schools or in special practices at general high schools. An example of such a synthesis may be the preparation of acetanilide via reaction of aniline with acetic acid or acetic anhydride. However, both of these reactions are associated with a rather long reaction time and certain hazards that limit their straightforward use in pedagogical practice. Conveniently, the reaction of aniline with acetic acid may be significantly optimised if it is performed under solvent-free conditions in the presence of microwaves, which reduces considerably the reaction time and provides very good yield, compared to traditional heating by a heating nest. In this study, the main pedagogical aim of the experimental design is elucidation of the influence of the structure of the amines on the course of the reaction with formic acid through inquiry-based learning. Specifically, the proposed experiments consist in investigation of the chemical yield achieved in microwave assisted reactions of aniline and its derivatives with formic acid in such a way that is adequate for constructive learning of undergraduate chemistry students. The selected series of amines involves aniline, 4-methoxyaniline, 4-chloroaniline, and 4-nitroaniline. In accordance with the chemical reactivity principles, students gradually realise that the influence of the substituent is reflected in the reaction yield, which grows in the following order: N-(4-nitrophenyl)formamide ˂ N-(4-chlorophenyl)formamide ˂ N-phenylformamide ˂ N-(4-methoxyphenyl)formamide. Therefore, the results of the experiments enable students to discover that stronger basicity of the amine increases the yield of the amide. In order to deepen the students’ chemical knowledge and skills, the concept of the experiments was transformed to support inquiry-based student learning. The proposed experiments are intended for experimental learning in universities educating future chemistry teachers, but they may be also utilised in the form of workshops for students at secondary schools of a general educational nature.
Rocznik
Strony
135--151
Opis fizyczny
Bibliogr. 65 poz., rys., tab., wykr.
Twórcy
  • Grammar School of Dr. Emil Holub, Na Mušce 1110, 53401 Holice, Czech Republic
  • Department of Chemistry and Chemistry Education, Faculty of Education, Charles University, M.D. Rettigové 4, 116 39 Prague, Czech Republic
  • Department of Chemistry and Chemistry Education, Faculty of Education, Charles University, M.D. Rettigové 4, 116 39 Prague, Czech Republic
  • Department of Chemistry and Chemistry Education, Faculty of Education, Charles University, M.D. Rettigové 4, 116 39 Prague, Czech Republic
Bibliografia
  • [1] Carey JS, Laffan D, Thomson C, Williams MT. Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem. 2006;4(12):2337-47. DOI: 10.1039/B602413K.
  • [2] Baran PS. Natural product total synthesis: As exciting as ever and here to stay. J Am Chem Soc. 2018;140(14):4751-5. DOI: 10.1021/jacs.8b02266.
  • [3] Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev. 2012;41(15):5185-238. DOI: 10.1039/C2CS35116A.
  • [4] Truax NJ, Romo D. Bridging the gap between natural product synthesis and drug discovery. Nat Prod Rep. 2020;37(11):1436-53. DOI: 10.1039/D0NP00048E.
  • [5] Rybińska-Fryca A, Mikolajczyk A, Puzyn T. Structure-activity prediction networks (SAPNets): a step beyond Nano-QSAR for effective implementation of the safe-by-design concept. Nanoscale. 2020;12(40):20669-76. DOI: 10.1039/D0NR05220E.
  • [6] Todd MH. Computer-aided organic synthesis. Chem Soc Rev. 2005;34(3):247-66. DOI: 10.1039/B104620A.
  • [7] Chambers SA, DeSousa JM, Huseman ED, Townsend SD. The dark side of total synthesis: strategies and tactics in psychoactive drug production. ACS Chem Neurosci. 2018;9(10):2307-30. DOI: 10.1021/acschemneuro.7b00528.
  • [8] Littleson MM, Baker CM, Dalençon AJ, Frye EC, Jamieson C, Kennedy AR, et al. Scalable total synthesis and comprehensive structure-activity relationship studies of the phytotoxin coronatine. Nat Commun. 2018;9(1):1105. DOI: 10.1038/s41467-018-03443-1.
  • [9] Hanessian S. Structure-based organic synthesis of drug prototypes: A personal odyssey. Chem Med Chem. 2006;1(12):1300-30. DOI: 10.1002/cmdc.200600203.
  • [10] Williams CM, Dallaston MA, Williams CM, Dallaston MA. The future of retrosynthesis and synthetic planning: Algorithmic, humanistic or the interplay? Aust J Chem. 2021;74(5):291-326. DOI: 10.1071/CH20371.
  • [11] Li C-J, Trost BM. Green chemistry for chemical synthesis. Proc Nat Acad Sci. 2008;105(36):13197-202. DOI: 10.1073/pnas.0804348105.
  • [12] Varma RS. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sus Chem Eng. 2016;4(11):5866-78. DOI: 10.1021/acssuschemeng.6b01623.
  • [13] Ganesh KN, Zhang D, Miller SJ, Rossen K, Chirik PJ, Kozlowski MC, et al. Green chemistry: A framework for a sustainable future. Org Proc Res Dev. 2021;25(7):1455-9. DOI: 10.1021/acs.oprd.1c00216.
  • [14] Sharma N, Sharma UK, Van der Eycken EV. Microwave-Assisted Organic Synthesis: Overview of Recent Applications [Internet]. In: Green Techniques for Organic Synthesis and Medicinal Chemistry. John Wiley Sons, Ltd; 2018. pp. 441-68. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119288152.ch17.
  • [15] Horikoshi S, Watanabe T, Narita A, Suzuki Y, Serpone N. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS). Sci Rep. 2018;8(1):5151. DOI: 10.1038/s41598-018-23465-5.
  • [16] Tanaka K, Toda F. Solvent-free organic synthesis. Chem Rev. 2000;100(3):1025-74. DOI: 10.1021/cr940089p.
  • [17] Wojnarowicz J, Chudoba T, Lojkowski W. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials. 2020;10(6):1086. DOI: 10.3390/nano10061086.
  • [18] Jordan AM, Wilke AE, Nguyen TL, Capistrant KC, Zarbock KR, Batiste Simms ME, et al. Multistep microwave-assisted synthesis of avobenzone. J Chem Educ. 2022;99(3):1435-40. DOI: 10.1021/acs.jchemed.1c00818.
  • [19] Havlíček J, Myška K, Tejchman W, Karásková N, Doležal R, Maltsevskaya NV, et al. Microwave synthesis of sulfanilic acid. Chem Didact Ecol Metrol. 2017;22(1-2):93-8. DOI: 10.1515/cdem-2017-0005.
  • [20] Pedaste M, Mäeots M, Siiman LA, de Jong T, van Riesen SAN, Kamp ET, et al. Phases of inquiry-based learning: Definitions and the inquiry cycle. Edu Res Rev. 2015;14:47-61. DOI: 10.1016/j.edurev.2015.02.003.
  • [21] Keselman A. Supporting inquiry learning by promoting normative understanding of multivariable causality. J Res Sci Teach. 2003;40(9):898-921. DOI: 10.1002/tea.10115.
  • [22] Mlejnek T, Myška K, Kolář K. Microwave assisted solvent free synthesis of benzamides as school experiment - effect of substituent in benzoic acid. In: Teaching of Science Subjects in Higher and Highest Education. Kraków: PU; 2016. pp. 143-51. ISBN: 9788380840386.
  • [23] McMurry JE. Organická chemie (Organic Chemistry). Brno-Praha: VUTIUM-VŠCHT; 2007. ISBN: 9788021432918.
  • [24] Aronoff DM. Aspirin and Reye’s syndrome. Drug-Safety. 2002;25(10):751. DOI: 10.2165/00002018-200225100-00007.
  • [25] Stuart DR, Bertrand-Laperle M, Burgess KMN, Fagnou K. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes. J Am Chem Soc. 2008;130(49):16474-5. DOI: 10.1021/ja806955s.
  • [26] Zhou X-Y, Chen X, Yang D. Iodine and Brønsted acid catalyzed C-C bond cleavage of 1,3-diketones for the acylation of amines. Syn Comm. 2020;50(2):177-84. DOI: 10.1080/00397911.2019.1691736.
  • [27] Fieser L, Williamson K. Organic Experiments. Lexington: D.C. Heath and Company; 1987. ISBN: 0669243442.
  • [28] Večeřa M, Panchartek J. Laboratorní Příručka Organické Chemie (Laboratory Handbook of Organic Chemistry). Praha: SNTL; 1987. ISBN: 0461587.
  • [29] Vogel AI. Practical Organic Chemistry. London: Longman; 1957. ISBN: 0-582-44245-1.
  • [30] Reeve W, Lowe VC. Preparation of acetanilide from nitrobenzene. J Chem Educ. 1979;56(7):488. DOI: 10.1021/ed056p488.
  • [31] Venables KM. Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides. Occup Env Med. 1989;46(4):222-32. DOI: 10.1136/oem.46.4.222.
  • [32] Varma RS. Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem. 1999;1(1):43-55. DOI: 10.1039/A808223E.
  • [33] Cresswell SL, Haswell SJ. Microwave ovens - out of the kitchen. J Chem Educ. 2001;78(7):900. DOI: 10.1021/ed078p900.
  • [34] Kappe CO, Murphree SS. Microwave-assisted carbonyl chemistry for the undergraduate laboratory. J Chem Educ. 2009;86(2):227. DOI: 10.1021/ed086p227.
  • [35] Baar MR, Falcone D, Gordon C. Microwave-enhanced organic syntheses for the undergraduate laboratory: Diels-Alder cycloaddition, Wittig reaction, and Williamson ether synthesis. J Chem Educ. 2010;87(1):84-6. DOI: 10.1021/ed800001x.
  • [36] Shell TA, Shell JR, Poole KA, Guetzloff TF. Microwave-assisted synthesis of n-phenylsuccinimide. J Chem Educ. 2011;88(10):1439-41. DOI: 10.1021/ed100983x.
  • [37] Damkaci F, Dallas M, Wagner M. A microwave-assisted Friedel-Crafts acylation of toluene with anhydrides. J Chem Educ. 2013;90(3):390-2. DOI: 10.1021/ed200479n.
  • [38] Baar MR, Gammerdinger W, Leap J, Morales E, Shikora J, Weber MH. Pedagogical comparison of five reactions performed under microwave heating in multi-mode versus mono-mode ovens: Diels-Alder cycloaddition, Wittig salt formation, E2 dehydrohalogenation to form an alkyne, Williamson ether synthesis, and Fischer esterification. J Chem Educ. 2014;91(10):1720-4. DOI: 10.1021/ed4005485.
  • [39] Reilly MK, King RP, Wagner AJ, King SM. Microwave-assisted esterification: A discovery-based microscale laboratory experiment. J Chem Educ. 2014;91(10):1706-9. DOI: 10.1021/ed400721p.
  • [40] Pilcher SC, Coats J. Preparing 4-ethoxyphenylurea using microwave irradiation: Introducing students to the importance of artificial sweeteners and microwave-assisted organic synthesis (MAOS). J Chem Educ. 2017;94(2):260-3. DOI: 10.1021/acs.jchemed.6b00279.
  • [41] Hájek M. Mikrovlny v akci (Microwaves in practice) [Internet]. Praha: Science Academy of Czech Republic; 2008. Available from: http://golem.fjfi.cvut.cz/wiki/Diagnostics/Basic/ElectronDensity/instructions/Mikrovlny%20v%20akci.pdf (accessed 1.06.2022).
  • [42] Loupy A. Microwaves in Organic Synthesis. 2. Weinheim: Wiley-WCH; 2006. ISBN: 9783527314522. DOI: 10.1002/9783527619559.
  • [43] Ybáñez N, Cervera ML, Montoro R, de la Guardia M. Comparison of dry mineralization and microwave-oven digestion for the determination of arsenic in mussel products by platform in furnace Zeeman-effect atomic absorption spectrometry. J Anal At Spectrom. 1991;6(5):379-84. DOI: 10.1039/JA9910600379.
  • [44] Gedye RN, Smith FE, Westaway KC. The rapid synthesis of organic compounds in microwave ovens. Can J Chem. 1988;66(1):17-26. DOI: 10.1139/v88-003.
  • [45] Adams JP. Imines, enamines and oximes. J Chem Soc. Perkin Trans. 1. 2000;(2):125-39. DOI: 10.1039/A808142E.
  • [46] Lidström P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis - a review. Tetrahedron. 2001;57(45):9225-83. DOI: 10.1016/S0040-4020(01)00906-1.
  • [47] Kaur N. Microwave-assisted synthesis of five-membered O-heterocycles. Syn Com. 2014;44(24):3483-508. DOI: 10.1080/00397911.2013.800213.
  • [48] Bogdal D, Loupy A. Application of microwave irradiation to phase-transfer catalyzed reactions. Org Process Res Dev. 2008;12(4):710-22. DOI: 10.1021/op8000542.
  • [49] Collins Jr MJ. Future trends in microwave synthesis. Fut Med Chem. 2010;2(2):151-5. DOI: 10.4155/fmc.09.133.
  • [50] Šauliová J. Využití mikrovlnného ohřevu v laboratorních cvičeních studentů jako demonstrační pokusy (Use of microwave heating in students’ laboratory exercises as demonstration experiments). Chem Listy. 2002;96(9):761-5. Available from: http://www.chemicke-listy.cz/ojs3/index.php/chemicke-listy/article/view/2303/2303 (accessed 1.06.2022).
  • [51] Ranu BC, Adak L, Ghosh T. Learning Green Chemistry and its principles from nature’s process and development of green procedures mimicking nature. Chem Teacher Int. 2021. DOI: 10.1515/cti-2021-0023.
  • [52] Galema SA. Microwave chemistry. Chem Soc Rev. 1997;26(3):233-8. DOI: 10.1039/CS9972600233.
  • [53] Slocombe DR, Porch A. Microwaves in chemistry. IEEE J Micro. 2021;1(1):32-42. DOI: 10.1109/JMW.2020.3029337.
  • [54] Jie X, Wang J, Gonzalez-Cortes S, Yao B, Li W, Gao Y, et al. Catalytic activity of various carbons during the microwave-initiated deep dehydrogenation of hexadecane. JACS Au. 2021;1(11):2021-32. DOI: 10.1021/jacsau.1c00326.
  • [55] Dhanush PC, Saranya PV, Anilkumar G. Microwave assisted C-H activation reaction: An overview. Tetrahedron. 2022;105:132614. DOI: 10.1016/j.tet.2021.132614.
  • [56] Olmsted JA. Synthesis of aspirin: A general chemistry experiment. J Chem Educ. 1998;75(10):1261. DOI: 10.1021/ed075p1261.
  • [57] Čermák J, Barešová A, Dostál H, Myška K, Kolář K. Syntéza amidů v přítomnosti mikrovln (Synthesis of amides in the presence of microwaves). In: Súčasnosť a perspektívy didaktiky chémie II (The present and perspectives of didactics of chemistry II). Bánská Bystrica: FPV UMB; 2009. pp. 143-5. ISBN: 9788080837518.
  • [58] Zemanová K, Myška K, Kolář K. Organická syntéza a Zelená chemie (Organic synthesis and green chemistry). Biologie-Chemie-Zeměpis. 2013;22(3):136-8. Available from: https://bichez.pedf.cuni.cz/archive/2013/c3.pdf (accessed 1.06.2022).
  • [59] Perreux L, Loupy A, Volatron F. Solvent-free preparation of amides from acids and primary amines under microwave irradiation. Tetrahedron. 2002;58(11):2155-62. DOI: 10.1016/S0040-4020(02)00085-6.
  • [60] Mullassery MD, Fernandez NB, Surya R, Thomas D. Microwave-assisted green synthesis of acrylamide cyclodextrin-grafted silylated bentonite for the controlled delivery of tetracycline hydrochloride. Sust Chem Pharm. 2018;10:103-11. DOI: 10.1016/j.scp.2018.10.006.
  • [61] Gerack CJ, McElwee-White L. Formylation of amines. Molecules. 2014;19(6):7689-713. DOI: 10.3390/molecules19067689.
  • [62] Bangar B, Kinkar S, Chobe S, Mandanad G, Yemul O, Dawane B. Clean and green approach for n-formylation of amines using formic acid under neat reaction condition. Arch App Sci Res. 2011;3(3):246-51. Available from: https://www.scholarsresearchlibrary.com/abstract/clean-and-greenapproach-for-nformylation-of-amines-using-formic-acid-under-neat-reaction-condition-9842.html (accessed 1.06.2022).
  • [63] Perrin DD, Dempsey B, Serjeant EP. pKa Prediction for Organic Acids and Bases. London: Chapman Hall; 1981. ISBN: 9780412221903.
  • [64] Dawson RMC, Elliot DC, Elliot WH, Jones KM. Data for Biochemical Research. Oxford: Oxford Science Publications, 1986. DOI: 10.1016/0307-4412(87)90110-5.
  • [65] Rusek M, Chroustova K, Bilek M, Skrehot P, Hon Z. Conditions for experimental activities at elementary and high schools from chemistry teachers’ point of view. Chem Didact Ecol Metrol. 2020;25(1-2):93-100. DOI: 10.2478/cdem-2020-0006.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c9226ed-20ec-4e50-8f97-81dc9e793af4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.