PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear deformation and failure of explosive welded Inconel-microalloyed steels bimetals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the following study, the forced shear specimens were investigated to obtain mechanical characterization of Inconel-microalloyed steels bimetals achieved through explosive bonding process. The chrome–molybdenum steel (16Mo3) and high strength microalloyed steel (X70) plates were joined and compared as base materials in the bimetals. Tests were performed quasi-statically and dynamically to examine the influence of strain rate on the shear strength of the metallurgical bond between two steel components. The joined area was also analyzed using microhardness measurements and by light microscopy. (Wave bonding interface and plastic deformation was present in both bimetals). Melted zones, especially In the case of 16Mo3 steel, were observed. The qualitative and quantitative assessments of the mechanical state-using computer simulations as well as microhardness distributions and microstructure development in the forced shear specimens showed that bimetal Inconel 601/X70 was superior to Inconel 601/16Mo3.
Rocznik
Strony
32--39
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Metals Engineering & Industrial Computer Science Dept., Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Metals Engineering & Industrial Computer Science Dept., Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Metals Engineering & Industrial Computer Science Dept., Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] B. Crossland, An experimental in vestigation of explosive welding parameters, Metals Technology 3 (1976) 8–12.
  • [2] F. Grignon, D. Benson, K.S. Vecchio, M.A. Meyers, Explosive welding of aluminum to aluminum: analysis, computations and experiments, International Journal of Impact Engineering 30 (2004) 1333–1351.
  • [3] S. Berski, H. Dyja, A. Maranda, J. Nowaczewski, G. Banaszek, Analysis of quality of bimetallic rod after extrusion process, Journal of Materials Processing Technology 177 (1) (2006) 582–586.
  • [4] H. Dyja, M. Pietrzyk, On the Theory of the Process of Bimetal Plate and Sheet Ho tRolling, Journal of Mechanical Working Technology 8 (4) (1983) 309–325.
  • [5] J. Majta, K. Muszka, Mechanical properties of ultra fine-grained HSLA and Ti-IF steels, Materials Science and Engineering A 464 (1-2) (2007) 186–191.
  • [6] J. Majta, J.G. Lenard, M. Pietrzyk, Modelling the evolution of the microstructure of a Nb steel, ISIJ International 36 (8) (1996) 1094–1102.
  • [7] K. Muszka, P.D. Hodgson, J. Majta, Study of the effect of grain size on the dynamic mechanical properties of micro alloyed steels, Materials Science and Engineering A 500 (1) (2009) 25–33.
  • [8] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8 (2) (2008) 103–117.
  • [9] B. Crossland, J.D. Williams, Explosive welding, Metals Review 15 (1970) 79–100.
  • [10] J. Peirs, P. Verleysen, Js. Degrieck, Theuse of hat-shaped specimens to study the high strain rates hear behaviour of Ti–6Al–4V, International Journal of Impact Engineering 37 (6) (2010) 703–714.
  • [11] M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Perez-Prado, T.R. McNelley, Micro structural evolution in adiabatic shear localization in stainless steel, Acta Materialia 51 (5) (2003) 1307–1325.
  • [12] Q. Xue, G.T. Gray, Development of adiabatic shear band in 316L stainless steel: Part I. Correlation between evolving microstructure and mechanical behavior, Metallurgical and Materials Transactions A37 (8) (2006) 2435–2446.
  • [13] N. Kahraman, B. Guence, F. Findik, Joining of titanium/ stainless steel by explosive ewelding and effect on interface, Journal of Materials Processing Technology 169 (2) (2005) 127–133.
  • [14] M. Acarer, B. Guenc, Investigation of explosive welding parameters and their effects on micro hardness and shear strength, Materials & Design 24 (8) (2003) 659–664.
  • [15] R.J. Clifton, J. Duffy, K.A. Hartley, T. G. Shawki, On critical conditions for shear band formation at high strain rates, Scripta Metallurgica1 8 (1984) 443–448.
  • [16] D. Rittel, Z.G. Wang, M. Merzer, Adiabatic shear failure and dynamic stored energy of cold work, Physical Review Letters 96 (7) (2006) 075502.
  • [17] F. Findik, Recent development sin explosive welding, Materials & Design 32 (3) (2011) 1081–1093.
  • [18] H. Paul, M. Faryna, M. Prażmowski, R. Bański, Changes in the bonding zone of explosively welded sheets, Archives of Metallurgy and Material, Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science 56 (2) (2011) 463–474.
  • [19] D. Dziedzic, J. Majta, Computer simulation aided studies on the impact transition temperature of micro alloyed steel forgings, Archives of Metallurgy and Material, Polish Academy of Sciences. Committee of Metallurgy, Institute of Metallurgy and Materials Science 57 (2) (2012) 565–573.
  • [20] L. Madej, L. Rauch, K. Perzyński, P. Cybułka, Digital Material Representation as an efficient tool for strain in homogeneities analysis at the microscale level, Archives of Civil and Mechanical Engineering 11 (3) (2011) 661–679.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c8dd8d5-c16d-4305-90ac-319082921f8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.