PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical and Mechanical Characterization of Ceramic Materials from Meknes Region (Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This scientific paper presents a comprehensive study of the physical and chemical properties of a clay sample collected from Meknes region of Morocco. X-ray diffraction analysis revealed the presence of kaolinite, muscovite, and quartz minerals in the clay sample. X-ray fluorescence analysis showed that the sample contained a significant amount of aluminum and silica. The Atterberg limit test indicated that the clay has a high plasticity index and is classified as a clay of low to medium plasticity. The ATG_DSC analysis revealed that the sample underwent multiple endothermic reactions, including dehydration, dehydroxylation, and decarbonation, at different temperature ranges. Shrinkage and weight loss experiments showed that the clay exhibited high shrinkage and weight loss upon drying. SEM-EDX analysis provided information on the microstructure and elemental composition of the clay sample. The water absorption test revealed that the clay has a low water absorption capacity. The three-point flexural test showed that the clay bricks had high flexural strength, which makes it suitable for use in high-stress applications. Overall, the results suggest that the clay sample can be used in a variety of applications, including building materials, ceramics, and other industrial uses.
Słowa kluczowe
Rocznik
Strony
183--197
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • ISGR, Laboratory of Intelligent Systems, Georesources and Renewable Energies, Geology Department, Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Fez, Morocco
autor
  • Department of Genie Civil, Laboratory LOMC UMR CNRS, University Havre, 53 Rue de Prony, 76600 Le Havre, France
  • ISGR, Laboratory of Intelligent Systems, Georesources and Renewable Energies, Geology Department, Faculty of Sciences and Technologies of Fez, Sidi Mohamed Ben Abdellah University, B.P. 2022, Fez, Morocco
Bibliografia
  • 1. Phonphuak N., Kanyakam S., Chindaprasirt P. 2016. Use of glass waste to improve the physical- mechanical properties of the clay brick. Journal of Cleaner production, 112, 3057–3062.
  • 2. Cultrone G., Sebastián E., Elert K., De la Torre M.J., Cazalla O., Rodriguez N.C. 2004. Influence of mineralogy and firing temperature on brick porosity. Journal of the European Ceramic Society, 24(3), 547–564.
  • 3. Tsozué D., Nzeugang A.N., Mache J.R., Loweh S., Fagel N. 2017. Mineralogical, physico-chemical and technological characterization of clays from Maroua (Far-North, Cameroon) for use in ceramic bricks production. Journal of Building Engineering, 11, 17–24.
  • 4. Srisuwan A., Phonphuak N. 2020. Physical property and compressive strength of fired clay bricks incorporated with paper waste. Journal of Metals, Materials and Minerals, 30(1).
  • 5. Cruz P.J., Camões A., Figueiredo B., Ribeiro M.J., Renault J. 2020. Additive manufacturing effect on the mechanical behaviour of architectural stoneware bricks. Construction and Building Materials, 238, 117690.
  • 6. Labò S., Marini A. 2022. In-plane flexural behavior of hollow brick masonry walls with horizontal holes. Engineering Structures, 273, 115086.
  • 7. Reynolds R.C. 1980. Interstratified clay minerals
  • 8. Grim R.E. 1953. Clay mineralogy, 76(4), 317, LWW.
  • 9. Lajat D., Biju-Duval B., Gonnard R., Letouzey J., Winnock E. 1975. Atlantic extension of the outer part of the Betic-Ribbarian Arc. Bulletin de la Societe geologique de France, 7(4), 481–485.
  • 10. Tejera J., Boutakiout M., Ammar A., Ait Brahim L., El Hatimi N. 1995. The Central Rif Basins (Morocco); markers of out-of-sequence thrusting of terminal Miocene age in the core of the chain. The Bulletin of the Geological Society of France, 166(6), 751–761.
  • 11. Maychou S. 2009. Morphostructural study and GIS mapping of the Septentrional Rharb and Prérif (Morocco): seismotectonic analysis and deformation modeling of the Moulay Bousselham region (Doctoral dissertation, Bordeaux 1).
  • 12. De Lamotte D.F. 1987. The structure of the outer rift (Morocco): an update on the role of thrusting and gravity slides. Journal of African Earth Sciences (1983), 6(5), 755–766.
  • 13. Mesrar L., Benamar A., Mesrar H., Jabrane R. 2021. Physical and Mechanical Properties Improvement of Miocene Marls (Morocco) Doped by Iron Oxide Fe2O3. In: Sustainable Environment and Infrastructure. Springer, Cham, 259–269.
  • 14. Calderón S., Sandoval C., Araya-Letelier G., Aguilar V. 2023. A detailed experimental mechanical characterization of multi-perforated clay brick masonry. Journal of Building Engineering, 63, 105505.
  • 15. Xiong W., Zhu H., Xu J., Ma J., Luo C. 2023. Experimental investigation on physical and mechanical properties of excavated soil-and fine recycled concrete aggregate-based unfired clay bricks containing compound additives. Case Studies in Construction Materials, 18, e02057.
  • 16. Mesrar H., Mesrar L., Touache A., Jabrane, R. 2023. Manufacture of Clay Aggregate Doped with Pozzolan Destined for Lightweight Concrete. Journal of Ecological Engineering, 24(1), 349–359.
  • 17. Silva G., Kim S., Bertolotti B., Nakamatsu J., Aguilar R. 2020. Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Construction and Building Materials, 258, 119697.
  • 18. Djenabou S., Ndjigui P.D., Bukalo N., Ekosse G.I. 2023. Effect of the incorporation of Neem (Azadirachta indica) wood ash in Kodeck ceramic materials for the manufacture of fired bricks (Far-North Cameroon). Heliyon, 9(3).
  • 19. Elavarasan S., Priya A.K., Kumar V.K. 2021. Manufacturing fired clay brick using fly ash and M−Sand. Materials Today: Proceedings, 37, 872–876.
  • 20. Ibrahim A.K., Ismail G.A., Badr M.A., Badr, M.M. 2022. Incorporating of landfill leachate in fired-clay bricks manufacturing: An experimental study. Process Safety and Environmental Protection, 166, 558–564.
  • 21. Sarani N.A., Kadir A.A., Din M.F.M., Hashim A.A., Hassan M.I.H., Hamid N.J.A., Johan S.F.S. 2023. Physical-mechanical properties and thermogravimetric analysis of fired clay brick incorporating palm kernel shell for alternative raw materials. Construction and Building Materials, 376, 131032.
  • 22. Gencel O., Munir M.J., Kazmi S.M.S., Sutcu M., Erdogmus E., Velasco P.M., Quesada D.E. 2021. Recycling industrial slags in production of fired clay bricks for sustainable manufacturing. Ceramics International, 47(21), 30425–30438.
  • 23. Taltasse P. 1953. Geological and hydrogeological research in the Fez-Moknes lake basin, &c.
  • 24. Gencel O., Erdugmus E., Sutcu M., Ore O. H. 2020. Effects of concrete waste on characteristics of structural fired clay bricks. Construction and Building Materials, 255, 119362.
  • 25. El Ouazzani D.C., Bouamrane A., Mansouri K., Fokam C.B. 2012. Valorization of paper mill sludge in construction: mineralogical analysis of the impact of incineration conditions. Journal of Materials and Environmental Science, 3(4).
  • 26. Klaarenbeek F.W. 1961. The development of yellow colours in calcareous bricks, Transactions of the British Ceramic Society, 60, 738–772.
  • 27. Kreimeyer R. 1987. Some notes on the firing colour of clay bricks, Applied Clay Science, 2 175–183.
  • 28. Jordán M.M., Boix A., Sanfeliu T., De la Fuente C. 1999. Firing transformations of cretaceous clays used in the manufacturing of ceramic tiles. Applied Clay Science, 14(4), 225–234.
  • 29. Strazzera B., Dondi M., Marsigli M. 1997. Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12(3), 247–266.
  • 30. Peters T., Iberg R., Mumenthaler T. 1978. Comparative study of the use of a quartz poor sand and a pure quartz sand for lime silica bricks and the kinetics of the hydrothermal hardening mechanism. Cement and Concrete Research, 8(4), 415–424.
  • 31. Castellanos A.O.M., Ríos R.C.A., Ramos G.M.A., Plaza P.E.V. 2012. A comparative study of mineralogical transformations in fired clays from the Laboyos Valley, Upper Magdalena Basin (Colombia). Boletín de Geología, 34(1), 43–55.
  • 32. Garzón E., Pérez-Villarejo L., Eliche-Quesada D., Martínez-Martínez S., Sanchez-Soto P.J. 2022. Vitrification rate and estimation of the optimum firing conditions of ceramic materials from raw clays: A review. Ceramics International.
  • 33. Dondi M. 1999. Clay materials for ceramic tiles from the Sassuolo District (Northern Apennines, Italy). Geology, composition and technological properties. Applied Clay Science, 15(3–4), 337–366.
  • 34. Zhang Q., Liu H., Qian Y., Xu M., Li W., Xu J. 2013. The influence of phosphorus on ash fusion temperature of sludge and coal. Fuel processing technology, 110, 218–226.
  • 35. Kornmann M. 2009. Clay materials: Basic materials and fabrication. Engineering Techniques. Construction, (C905v2).
  • 36. Dubois V., Zentar R., Abriak N.-E., Grégoire P. 2011. Fine sediments as a granular source for civil engineering, Europeen Journal Environnement Civil Engineering, 15, 137–166.
  • 37. Achour R., Abriak N.E., Zentar R., Rivard P., Gregoire P. 2014. Valorization of Unauthorized Sea Disposal Dredged Sediments as a Road Foundation Material. Environmental Technology, 35(16), 1997–2007.
  • 38. Boussen S., Sghaier D., Chaabani F., Jamoussi B., Bennour A. 2016. Characteristics and industrial application of the Lower Cretaceous clay deposits (Bouhedma Formation), Southeast Tunisia: Potential use for the manufacturing of ceramic tiles and bricks. Applied Clay Science, 123, 210–221.
  • 39. Nagaraj H.B., Sravan M.V., Arun T.G., Jagadish K.S. 2014. Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks. International Journal of Sustainable Built Environment, 3(1), 54–61.
  • 40. Semiz B. 2017. Characteristics of clay-rich raw materials for ceramic applications in Denizli region (Western Anatolia). Applied Clay Science, 137, 83–93.
  • 41. Bautista-Marín J.D., Esguerra-Arce A., Esguerra-Arce J. 2021. Use of an industrial solid waste as a pigment in clay bricks and its effects on the mechanical properties. Construction and Building Materials, 306, 124848.
  • 42. Snethen D.R., Johnson L.D., Patrick D.M. 1977. An evaluation of expedient methodology for identification of potentially expansive soils (No. FHWA-RD-77-94). United States. Federal HIghway Administration. Office of Research and Development.
  • 43. Madlener R., Kowalski K., Stagl S. 2007. New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria. Energy policy, 35(12), 6060–6074.
  • 44. González J.A., Ruiz M.D.C. 2006. Bleaching of kaolins and clays by chlorination of iron and titanium. Applied clay science, 33(3–4), 219–229.
  • 45. Hajjaji W., Hachani M., Moussi B., Jeridi K., Medhioub M., López-Galindo A., Jamoussi F. 2010. Mineralogy and plasticity in clay sediments from north-east Tunisia. Journal of African Earth Sciences, 57(1–2), 41–46.
  • 46. Jordan M.M., Montero M.A., Meseguer S., Sanfeliu T. 2008. Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies. Applied Clay Science, 42(1–2), 266–271.
  • 47. Dondi M., Raimondo M., Zanelli C. 2014. Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 96, 91–109.
  • 48. Raimondo M., Dondi M., Gardini D., Guarini G., Mazzanti F. 2009. Predicting the initial rate of water absorption in clay bricks. Construction and Building Materials, 23(7), 2623–2630.
  • 49. Milheiro F.A.C., Freire M.N., Silva A.D., Holanda J.N.F. 2005. Densification behaviour of a red firing Brazilian kaolinitic clay. Ceramics International, 31(5), 757–763.
  • 50. Benahsina A., El Haloui Y., Taha Y., Elomari M., Bennouna M.A. 2022. Substitution of natural clay by Moroccan solid mining wastes to manufacture fired bricks. Materials Today: Proceedings, 58, 1324–1330.
  • 51. Dondi M., Guarini G., Ligas P., Palomba M., Raimondo M. 2001. Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district (Western Sardinia, Italy). Applied Clay Science, 18(3–4), 145–155.
  • 52. Hachani M., Hajjaji W., Moussi B., Medhioub M., Rocha F., Labrincha J.A., Jamoussi F. 2012. Production of ceramic bodies from Tunisian Cretaceous clays. Clay minerals, 47(1), 59–68.
  • 53. El Ouahabi M., Daoudi L., De Vleeschouwer F., Bindler R., Fagel N. 2014. Potentiality of clay raw materials from northern Morocco in ceramic industry: Tetouan and Meknes areas. Journal of Minerals and Materials Characterization and Engineering, 2, 145.
  • 54. Dondi M., García T.J., Rambaldi E., Zanelli C., Cabedo V.M. 2021. Resource efficiency versus market trends in the ceramic tile industry: Effect on the supply chain in Italy and Spain. Resources, Conservation and Recycling, 168, 105271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c8af144-a127-427e-b5b5-64b48cdbb78f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.