PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of hydroxyapatite in a continuous reactor : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Because of excellent properties, similar to natural bone minerals, and variety of possible biomedical applications, hydroxyapatite (HAp) is a valuable compound among the calcium phosphate salts. A number of synthesis routes for producing HAp powders have been reported. Despite this fact, it is important to develop new methods providing precise control over the reaction and having potential to scale-up. The main motivation for the current paper is a view of continuous synthesis methods toward medical application of produced hydroxyapatite, especially in the form of nanoparticles.
Rocznik
Strony
281--–293
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Afshar A., Ghorbani M., Ehsani N., Saeri M.-R., Sorell C., 2003. Some important factors in the wet precipitation process of hydroxyapatite. Mater. Des., 24, 3, 197–202. DOI: 10.1016/S0261-3069(03)00003-7.
  • 2. Anwar A., Akbar S., Sadiqa A., Kazmi, M., 2016. Novel continuous flow synthesis, characterization and antibacterial studies of nanoscale zinc substituted hydroxyapatite bioceramics. Inorg. Chim. Acta, 453, 1, 16–22. DOI:10.1016/j.ica.2016.07.041.
  • 3. Castro F., Kuhn S., Jensen K., Ferreira A., Rocha F. , Vicente A., Teixeira J.A., 2013a. Process intensification and optimization for hydroxyapatite nanoparticles production. Chem. Eng. Sci., 100, 352–359. DOI: 10.1016/j.ces.2013.01.002.
  • 4. Castro F., Ferreira A., Rocha F., Vicente A., Teixeira, J.A., 2013b. Continuous-flow precipitation of hydroxyapatite at 37 ◦C in a meso oscillatory flow reactor. Ind. Eng. Chem. Res., 52, 29, 9816–9821. DOI: 10.1021/ie400710b.
  • 5. Castro F., Ferreira A., Rocha F., Vicente A., Teixeira J.A., 2013c. Precipitation of hydroxyapatite at 37 ◦C in a meso oscillatory flow reactor operated in batch at constant power density. AIChE J., 59, 12, 4483–4493. DOI: 10.1002/aic.14193.
  • 6. Catros S., Guillemont F., Lebraud E., Chanseau C., Perez S., 2010. Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature. IRBM, 31, 226–233. DOI: 10.1016/j.irbm. 2010.04.002.
  • 7. Chaudhury K., Kandasamy J., Kumar H.S., RoyChoudhury S., 2014. Regenerative nanomedicine: Current perspectives and future directions. Int. J. Nanomed., 9, 4153–4167. DOI: 10.2147/IJN.S45332.
  • 8. Cóta L.F., Licona K.P.M., Lunz J.N., Pereira L.C., 2016. Hydroxyapatite nanoparticles: Synthesis by sonochemical method and assessment of processing parameters via experimental design. Mater. Sci. Forum, 869, 896–901. DOI: 10.4028/www.scientific.net/MSF.869.896.
  • 9. Dorozhkin S.V., 2009. Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials, 2, 1975–2045. DOI: 10.3390/ma2041975.
  • 10. Dorozhkin S.V., 2010. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater., 2, 1975–2045. DOI: 10.1016/j.actbio.2009.10.031.
  • 11. Fahami A., Ebrahimi-Kahrizsangi R., Nasiri-Tabrizi B., 2011. Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sci., 13, 135–141. DOI: 10.1016/j.solidstatesciences.2010.10.026.
  • 12. Fujii E., Kawabata K., Shirosaki Y., Hayakawa S., Osaka A., 2015. Fabrication of calcium phosphate nanoparticles in a continuous flow tube reactor. J. Ceram. Soc. Jpn., 123, 101–105. DOI: 10.2109/jcersj2.123.101.
  • 13. Gomez-Morales J., Torrent-Burgues J., Boix T., Sainz J.F., Clemente R.R., 2001. Precipitation of stoichiometric hydroxyapatite by a continuous method. Cryst. Res. Technol., 36, 15–26. DOI: 10.1002/1521-4079(200101)36:1<15::AID-CRAT15>3.0.CO;2-E.
  • 14. Kandori K., Kuroda T., Togashi S., Katayama E., 2011. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption. J. Phys. Chem. B, 115, 653–659. DOI: 10.1021/jp110441e.
  • 15. Kunjalukkal S.P., Balakrishnan A., Chu M.C., Jai C., 2009. Sol-gel synthesisand characterization of hydroxyapatite nanorods. Particuology, 7, 466–470. DOI: 10.1016/j.partic.2009.06.008.
  • 16. Lester E., Tang S.V.Y., Khlobystov A., Rose V.L., Buttery L.D., Roberts C.J., 2013. Producing nanotubes of biocompatible hydroxyapatite by continuous hydrothermal synthesis. Cryst. Eng. Comm., 15, 3256–3260. DOI: 10.1039/c3ce26798a.
  • 17. Lester E., Aksomaityte G., Li J., Gomez S., Gonzalez-Gonzalez J., Poliakoff M., 2012. Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Prog. Cryst. Growth Charact. Mater., 58, 3–13. DOI: 10.1016/j.pcrysgrow.2011.10.008.
  • 18. Pham T.T.T., Phuong N.T., Pham T.N., Dinh T.M.T., 2013. Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method. Adv. Nat. Sci.: Nanosci. Nanotechnol.,4, 035014. DOI: 10.1088/2043-6262/4/3/035014.
  • 19. Ponomareva N.I., Poprygina T.D., Karpov S.I., Lesovoi M.V., Agapov B.L., 2010. Microemulsion method for producing hydroxyapatite. Russ. J. Gen. Chem., 80, 1070–3632. DOI: 10.1134/S1070363210050063.
  • 20. Rodríguez-Clemente R., López-Macipe A., Gómez-Morales J., Torrent-Burgués J., Castaño V.M., 1998. Hydroxyapatite precipitation: A case of nucleation-aggregation-agglomeration-growth mechanism. J. Eur. Ceram. Soc., 18, 1351–1356. DOI: 10.1016/S0955-2219(98)00064-8.
  • 21. Sadat-Shojai M., Khorasani M.T., Dinpanah-Khoshdargi E., Jamshidi A., 2013. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater., 9, 7591–7621. DOI: 10.1016/j.actbio.2013.04.012.
  • 22. SuchanekW., Yoshimura M., 1998. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res., 13, 1, 94–117. DOI: 10.1557/JMR.1998.0015.
  • 23. Šupová M., 2015. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int., 41, 9203–9231. DOI: 10.1016/-j.ceramint.2015.03.316.
  • 24. Uskoković V., Uskokovi´c D.P., 2011. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. Part B, 96 B, 152–191. DOI: 10.1002/jbm.b.31746.
  • 25. Vallet-Regí M., González-Calbet J.M., 2004. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem., 2, 1–31. DOI: 10.1016/j.progsolidstchem.2004.07.001.
  • 26. Wojasiński M., Duszy´nska E., Ciach T., 2015. Lecithin-based wet chemical precipitation of hydroxyapatite nanoparticles. Colloid. Polym. Sci., 293, 1561–1568. DOI: 10.1007/s00396-015-3557-0.
  • 27. Yang Q., Wang J.X., Shao L., Wang Q.A., Guo F., Chen J., Gu. L., An Y.T., 2010. High throughput methodology for continuous preparation of hydroxyapatite nanoparticles in a microporous tube-in-tube microchannel reactor. Ind. Eng. Chem. Res., 49, 140–147. DOI: 10.1021/ie9005436.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c8aa342-5499-4db3-9a4e-ab46aceb0a1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.