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APPROXIMATION OF THE SPHEROID OFFSET SURFACE AND 

THE TORUS OFFSET SURFACE 

Anna BOROWSKA 

Faculty of Computer Science, 

Bialystok University of Technology, ul. Wiejska 45a, 15-351 Bialystok, Poland 

e-mail: a.borowska@pb.edu.pl 

 

Abstract. In this paper the issue of approximation of the spheroid offset surface off(S(u, v); s) 

at distance s by the spheroid surface S1(u, v) is considered. The problem of determining the 

appropriate parameter values for the spheroid offset surface off(S(u, v); s) is important due to 

the numerous practical applications of the spheroid as a mathematical model of the Earth. We 

present the algorithm which gives the appropriate parameter values for the spheroid surface 

S(u, v) and its offset surface off(S(u, v); s). 

Keywords: spheroid offset surfaces, torus, approximation, geoid 

1 Introduction 

An oblate spheroid (with semi-axes a=b and c) (cf. Fig. 1) and concentric with it spheroids 

(with semi-axes a±s, a±s and c±s) are used as models for imaging and studying phenomena 

related to the surface of the Earth and factors which cause changes on (and under) its surface. 

An oblate spheroid is the next, after a geoid, the reference surface approximating the shape 

of the Earth. In contrast to the geoid, it can be described analytically. The oblate spheroid was 

introduced to geodesy to investigate and clearly describe the mathematical relationships 

between elements of the geodetic network projected onto the surface of the ellipsoid, calculate 

the coordinates of the points of the network so that maps could be made on the basis 

ofthe network (cf. [2]). 

In many cases, instead of concentric spheroids, it is more convenient to use 

the spheroid offset surfaces (especially when phenomena propagating perpendicular to 

the surface of the spheroid are investigated). The distance between any point P of the spheroid 

surface S(u, v) and the point P1 of the spheroid offset surface off(S(u, v); s)) (along the normal 

line at the point P) is constant. Concentric spheroids do not have this property. It is an 

important task to find the appropriate parameters for the ellipsoid offset surface off(S(u, v); s)) 

and for the ellipsoid S1(u, v) (which approximates the offset off(S(u, v); s))). The deviation 

between these surfaces must not exceed the fixed value k. 

 

Figure 1: The oblate spheroid (a=b=4, c=8) Figure 2: The three-axis ellipsoid (a=4, b=8, c=6) 
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The paper describes two problems: (a) approximation of the spheroid offset surface 

off(S(u, v); s)) by the spheroid S1(u, v) (sections 3, 4) and (b) approximation of the torus offset 

surface off(T(u, v); s)) by the torus T1(u, v) (Section 5). 

Let us assume that P is any point on the surface S and l is the normal line to S at 

the point P. The point P1 lies on the normal l at distance s from P. Q1 is the intersection point 

of the normal line l with the surface S1. 

Section 2 contains mathematical facts necessary to describe research results. In section 

3 useful formulas for coordinates of points P1 and Q1 (for any point P) for surfaces off(S(u, v); 

s)) and S1(u, v) were determined. Section 5 delivers analogous formulas for the torus offset 

surface off(T(u, v); s)). Section 4 contains the results of numerical analysis for the problem 

of the approximation of the spheroid offset surface off(S(u, v); s)) by the spheroid S1(u, v). 

2 Mathematical formulas 

Let S(u, v) = (x(u, v), y(u, v), z(u, v)) (u∈[u1, u2], v∈[v1, v2]) be a smooth parametric surface 

in 3-dimensional space. R0 = (x0, y0, z0) is a fixed point of the surface S, n = r1(u0, v0) × r2(u0, 

v0) is a normal vector to the surface S at the point R0. R = (x, y, z) is any point of a tangent 

plane τ to the surface S at the point R0. R0R = [x-x0, y-y0, z-z0] is a vector. Then the equation of 

the tangent plane τ is of the form (cf. [6]) 

0n: 0 =RRoτ . 

The symbol ° means the scalar product of vectors. The normal vector to the surface S at the 

point R0 is defined as the vector product of vectors r1 and r2 (where r1, r2 are tangent vectors 

to the surface S at the point R0) (cf. [7]) 
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The length of the vector is expressed as (cf. [6]) 
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The unit normal vector to the surface S at the point R0 is of the form (cf. [6]) 
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Definition 1 (an offset surface Sd at distance d) (cf. [8], p. 341) 

For a given smooth surface S, we define an offset Sd at distance d as follows. On each surface 

normal, we mark the two points that are at a constant distance d from the surface S. The set 

of all of these points forms the offset surface Sd. The offset surface Sd(u, v) at distance d to 

S(u, v) is obtained as ),(n),(),( ver vudvuSvuSd ±= . 

The interesting offset surfaces (offset curves) are described in [5], [6] and [3]. 

Lemma 1 (cf. [1]) If )arccos()arccos( yx =  and x+y >0 then 122 =+ yx . 
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3 Spheroid 

Let S(u, v) and S1(u, v) be the concentric spheroid surfaces defined as follows (cf. [4], p. 238) 

 S(u, v) )sin()cos( vuax = , )sin()sin( vuay = , )cos(vcz =   (1) 

 S1(u, v) )sin()cos()( vusax += , )sin()sin()( vusay += , )cos()( vscz +=   (2) 

where u∈[0, 2π], v∈[0, π]. 

The normal vector to the surface S(u, v) at the point P is of the form 
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The unit normal vector to S(u, v) at the point P is expressed as follows 
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The equation of the spheroid offset surfaces is as follows 

 =],,[:));,(( ZYXsvuSoff  
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Figure 3 shows the (green) fragment of the three-axis ellipsoid S(u, v) (for a=3, b=4, 

c=6, u, v∈[0, π/2]) and the larger (blue) ellipsoid offset surface off(S(u, v); s) for s=1. Figure 4 

shows the (green) fragment of the three-axis ellipsoid S(u, v) and the smaller (blue) ellipsoid 

offset surface off(S(u, v); s). The offset (Fig. 3) and the fragment of the ellipsoid (Fg. 4) were 

cut out to show the ellipsoid (Fig. 3), the offset (Fig. 4). 

Let us determine the coordinates of the point P1 lying on the normal l to the spheroid 

surface S(u, v) (at the point P) and distant from P by the length s. We use the equation of the 

spheroid offset surfaces (cf. (3)). The coordinates of the point P1 are expressed as follows 

 
w
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1
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)cos( 0
2

1
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 2
0

222 ))cos(()()( vaccxw PyP ++= , 

 )sin()cos( 00 vuaxP = , )sin()sin( 00 vuayP = , )cos( 0vczP =  

The coordinates of the point Q1 (the intersection of the normal line l to the surface S(u, v) at 

the point P with the surface S1(u, v)) were determined as follows. Let us write down the 

parametric equations of the normal line l to the spheroid surface S(u, v) at the point P 

 
Figure 3: Fragment of the ellipsoid S(u, v) (a=3, b=4, c=6, u, v∈[0, π/2]) and the offset surface off(S(u, v); s) 
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 ))sin(1)(sin()sin( 000 vhcvuay += , u0∈[0, 2π], v0∈[0, π], Rh ∈   (5) 
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2

0 vhacvz += . 

Let us assume that u0∈[0, π/2], v0∈[0, π/2] and set the parameter h giving the intersection 

points of the line l with the surface S1(u, v) (cf. (2)). The normal l and the axis Z lie on the 

same plane, therefore (after simplification) we obtain 
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4 Parameter analysis for the spheroid offset surfaces 

The approximation of the spheroid offset surface off(S(u, v); s) by the spheroid surface S1(u, v) 

is satisfactory if for any point P of the spheroid surface S we have 
11

|| 11 QPdQP = ≤ k for a 

fixed k (cf. [1], [3]). 

We define the eccentricity as 2)(1 ace −= . In this section such ranges of parameter 

values e, s were determined that the approximation of the spheroid offset surface off(S(u, v); s) 

by the spheroid surface S1(u, v) is satisfactory for k=1 (the acceptable deviation between the 

surfaces). Numerical analysis was carried out for the larger offset surfaces. 

In order to check if the approximation of the offset surface off(S(u, v); s) by the surface 

S1(u, v) is satisfactory, one of the following problems should be solved. 

(A) We have the semi-axis c, a length s and a deviation k. For the spheroid offset 

surface off(S(u, v); s) we need to find such eccentricity eMax that for e∈[0, eMax] and any point 

P of the spheroid surface S the condition 
11QPd (e)≤k is met. 

(B) We have the semi-axis c, eccentricity e and a deviation k. For the spheroid offset 

surface off(S(u, v); s) we need to find such a distance sMax that for s∈[1.5, sMax] and any point 

P of the spheroid surface S the condition )(
11

sd QP ≤k is met. 
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4.1 Parameters v1, v2 

In this section, for the (larger) spheroid offset surface off(S(u, v); s) and the spheroid surface 

S1(u, v) the specific angles v1 and v2 were determined. For the established values c and s and 

the angle v1 we calculate the value eMax. For the established values c and e and the angle v2 we 

calculate the value sMax. 

Test 1. The spheroid surfaces were considered for parameter values c=5, 10, …, 100 and 

2)(1 ace −= . The length s∈[4, 100] was tested (every 1). The eccentricity e∈[0, 1) was 

taken (every 0.05). The permissible deviation is k=1. The angles v1, v2∈[0, π/2) were taken 

(every π/36), the angle u=0°. The following facts have been verified for the larger spheroid 

offset surfaces. For the assumed values c and s, the value eMax occurs for v1=50° - 70° (see 

Table 1). For the assumed values c and e, the value sMax occurs for v2=50° - 65° (see Table 2). 

Table 1. For given c and s the value eMax (such that for e∈[0, eMax] 
11QPd (e)≤1) was obtained for the angle v1 

v c=5 c=10 c=15 c=20 c=25 c=30 c=35 c=40 c=45 c=50 

v=70° s∈[4,8] s∈[4] s∈[4] - - - - - - - 

v=65° s∈[9,100] s∈[5,14] s∈[5,8] s∈[4,7] s∈[4,7] s∈[4,6] s∈[4,6] s∈[4,6] s∈[4,6] s∈[4,6] 

v=60° - s∈[15,100] s∈[9,100] s∈[8,47] s∈[8,25] s∈[7,20] s∈[7,17] s∈[7,16] s∈[7,15] s∈[7,14] 

v=55° - - - s∈[48,100] S∈[26,100] s∈[21,100] s∈[18,100] s∈[17,100] s∈[16,100] s∈[15,100] 

 c=55 c=60 c=65 c=70 c=75 c=80 c=85 c=90 c=95 c=100 

v=65° s∈[4,6] s∈[4,6] s∈[4,6] s∈[4,5] s∈[4,5] s∈[4,5] s∈[4,5] s∈[4,5] s∈[4,5] s∈[4,5] 

v=60° s∈[7,14] s∈[7,13] s∈[7,13] s∈[6,13] s∈[6,12] s∈[6,12] s∈[6,12] s∈[6,12] s∈[6,12] s∈[6,12] 

v=55° s∈[15,100] s∈[14,100] s∈[14,100] s∈[14,100] s∈[13,85] s∈[13,75] s∈[13,68] s∈[13,63] s∈[13,59] s∈[13,56] 

v=50° - - - - S∈[86,100] s∈[76,100] s∈[69,100] s∈[64,100] s∈[60,100] s∈[57,100] 

Table 2. For given c and e the value sMax (such that for s∈[1.5, sMax] 
11QPd (s)≤1) was obtained for the angle v2 

v c=5 c=10 c=15 c=20 c=25 c=30 c=35 c=40 c=45 c=50 

[5°-85°] e∈[0,0.9] e∈[0,0.85] E∈[0,0.85] e∈[0,0.8] e∈[0,0.8] e∈[0,0.8] e∈[0,0.8] e∈[0,0.75] e∈[0,0.75] e∈[0,0.75] 

v=55° - - - e∈[0.85] e∈[0.85] e∈[0.85] e∈[0.85] e∈[0.8,0.85] e∈[0.8,0.85] e∈[0.8,0.9] 

v=60° - e∈[0.9] e∈[0.9] e∈[0.9,0.95] e∈[0.9,0.95]e∈[0.9,0.95] e∈[0.9,0.95]e∈[0.9,0.95] e∈[0.9,0.95] e∈[0.95] 

v=65° e∈[0.95] e∈[0.95] e∈[0.95] - - - - - - - 

 c=55 c=60 c=65 c=70 c=75 c=80 c=85 c=90 c=95 c=100 

[5°-85°] e∈[0,0.75] e∈[0,0.75] E∈[0,0.75] e∈[0,0.75] e∈[0,0.7] e∈[0,0.7] e∈[0,0.7] e∈[0,0.7] e∈[0,0.7] e∈[0,0.7] 

v=50° - - - - e∈[0.75] e∈[0.75] e∈[0.75] e∈[0.75] e∈[0.75] e∈[0.75] 

v=55° e∈[0.8,0.9]e∈[0.8,0.9]E∈[0.8,0.9] e∈[0.8,0.9] e∈[0.7,0.9] e∈[0.8,0.9] e∈[0.8,0.9] e∈[0.8,0.9] e∈[0.8,0.9] e∈[0.8,0.9] 

v=60° e∈[0.95] e∈[0.95] e∈[0.95] e∈[0.95] e∈[0.95] e∈[0.95] e∈[0.95] e∈[0.95] e∈[0.95] e∈[0.95] 

 

Example 1. Let us assume that c=35 and k=1. We need to find such length of the semi-axis a 

so that the approximation of the offset surface off(S(u, v); s) by the surface S1(u, v) is 

satisfactory. (a) s=10, (b) s=20. 

(a) Let s=10. We determine the values eMax for v1=60° (see Table 1 and 3), because c=35 and 

s=10∈[7, 17]. The approximation will be satisfactory if we choose a≤96.542 (Table 3). 

(b) Let s=20. We determine the values eMax for v2=55° (see Table 1 and 3), because c=35 and 

s=20∈[18, 100]. The approximation will be satisfactory if we choose a≤75.316 (Table 3). 

Table 3. The values eMax (aMax) (such that for e∈[0, eMax] 
11QPd (s)≤1) for given c, s and the angle v1=60° / 

v1=55° 
The values eMax (aMax) for given s, c and the angle v1=60° 

s=4 s=10 s=20 s=30 s=40 s=50 s=60 s=70 s=80 s=90 s=100 

eMax=0.983 

(aMax=191.1) 

0.932 

(96.542) 

0.886 

(75.443) 

0.86 

(68.648) 

0.844 

(65.215) 

0.832 

(63.128) 

0.824 

(61.72) 

0.817 

(60.704) 

0.812 

(59.937) 

0.807 

(59.335) 

0.804 

(58.851) 

The values eMax (aMax) for given s, c and the angle v1=55° 

s=4 s=10 s=20 s=30 s=40 s=50 s=60 s=70 s=80 s=90 s=100 

eMax=0.987 

(aMax=221.702) 

0.934 

(98.097) 

0.885 

(75.316) 

0.858 

(68.271) 

0.841 

(64.763) 

0.829 

(62.646) 

0.82 

(61.225) 

0.814 

(60.203) 

0.808 

(59.432) 

0.804 

(58.829) 

0.8 

(58.344) 
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Example 2. Let us assume, that c=35 and k=1. We need to find such length s so that the 

approximation of the offset surface off(S(u, v); s) by the surface S1(u, v) is satisfactory. (a) 

a=80 (e=0.899218411). 

(a) Let a=80. We determine the values sMax for v2=60° (see Table 2 and 4). The approximation 

will be satisfactory if we choose s≤sMax=16.357 (see Table 4). 

Table 4. The values sMax (such that for s∈[1.5, sMax] 
11QPd (s)≤1) for given c, e and the angle v2=60°. The [+] 

symbol means: 
11QPd (s)≤1 for s∈[4, sMax] 

The values sMax for given e, c and the angle v2=60° 

e=0 e=0.1 e=0.2 e=0.3 e=0.4 e=0.5 e=0.6 e=0.7 e=0.8 e=0.899218 e=0.9 

sMax=[+] [+] [+] [+] [+] [+] [+] [+] [+] 16.357 16.168 

5 Torus 

Let T(u, v) and T1(u, v) be the torus surfaces defined as follows 

 T(u, v) ))cos()(cos( vrRux += , ))cos()(sin( vrRuy += , )sin(vrz =   (8) 

 T1(u, v) ))cos()()(cos( vsrRux ++= , ))cos()()(sin( vsrRuy ++= , )sin()( vsrz +=  (9) 

where u∈[0, 2π], v∈[0, 2π]. 

The normal vector to the torus T(u, v) at the point P is of the form 

 =×= ),(),(n 002001 vurvur  

[ ]))cos()(sin()),cos()(cos()sin()),cos()(cos()cos( 00000000 vrRvrvrRvurvrRvur +++=  

The unit normal vector to T(u, v) at the point P is expressed as follows 

 =
×

×
=

|),(),(|

),(),(
n

002001

002001
ver

vurvur

vurvur
)]sin(),cos()sin(),cos()[cos( 00000 vvuvu  

The equation of the torus offset surfaces is of the form 

 =],,[:));,(( ZYXsvuToff )]sin(),cos()sin(),cos()[cos(],,[ vvuvuszyx ±  

The torus surface T(u, v) and its offset surfaces off(T(u, v); s) are of the same type. 

Clever proof. The surface T(u, v) is defined above (cf. (8)). Let us write down the parametric 

equations of the normal line l to the torus surface T(u, v) at the point P ( Rh ∈ ) 
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u0∈[0, 2π], v0∈[0, 2π]. We obtained the equations of the surface T1(u, v) (cf. (9)) for h=s. 

The coordinates of the point P1 lying on the normal l to the torus surface T(u, v) (at the 

point P) and distant from P by the length s: 

 ))cos()()(cos( 0011
vsrRuxx QP ++==  

 ))cos()()(sin( 0011
vsrRuxy QP ++==  

 )sin()( 011
vsrxz QP +==  
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6 Algorithm 

The algorithm presented below finds such parameter values for the spheroid offset surface 

off(S(u, v); s)) and for the spheroid S1(u, v) that the deviation between these surfaces does not 

exceed the fixed value k. The user gives parameter values (the semi-axis c, a length s and a 

deviation k) and receives such value eMax that for each value e∈[0, eMax] the approximation of 

the offset surface off(S(u, v); s) by the surface S1(u, v) is satisfactory. 

Justification of the algorithm. The surfaces S(u, v) and S1(u, v) are defined in section 3 

(cf. (1), (2)). We limit the calculations to the fragment of the spheroid surface for u∈[0, π/2], 

v∈[0, π/2]. The normal l and the axis Z lie on the same plane, so we can assume that u=0°. 

The points P, P1, Q1, D1 and the normal line l are defined in Figure 6. The point B1 belongs to 

the surface S1(u, v) for u=0° and has the same coordinate x as the point D1 (see Figure 6). The 

algorithm for consecutive angles v∈[0, π/2] (taken every dt) calculates the value eMax and then 

(for the value eMax) computes the coordinates of the points P, P1, D1, Q1 and the distance 

11QPd . 

void elipsoida::Algo3D(double dt, double s, double k){ 

//definitions of variables 

i=1; v=dt; 

while(v<M_PI/2){ 

  e=0; b1=0; 

  while(e<0.99){ 

    a=sqrt((c*c)/(1-(e*e))); 

    xP=a*sin(v);                zP=c*cos(v); 

    w=pow((c/a)*tan(v),2); 

    xP1=xP+s*sqrt(w/(1+w));     zP1=zP+s/sqrt(1+w); 

    xD1=xP+(s-k)*sqrt(w/(1+w)); zD1=zP+(s-k)/sqrt(1+w); 

    fi=asin(xD1/(a+s)); 

    zB1=(c+s)*cos(fi); 

    if(zB1>zD1){e+=0.000005; b1=1;}else{e-=0.000005; if(b1)break;}} 

  a=sqrt((c*c)/(1-(e*e))); 

  xP=a*sin(v);                  zP=c*cos(v); 

  w=pow((c/a)*tan(v),2); 

  xP1=xP+s*sqrt(w/(1+w));       zP1=zP+s/sqrt(1+w); 

  xD1=xP+(s-k)*sqrt(w/(1+w));   zD1=zP+(s-k)/sqrt(1+w); 

  xQ1=(a+s)*sin(fi);            zQ1=(c+s)*cos(fi); 

  dpq1=sqrt(pow((xQ1-xP1),2)+pow((zQ1-zP1),2)); 

  cout << v << " " << e << " " << xQ1 << " " << zQ1 << " " << dpq1; 

  i++; v=i*dt;}} 

Results of the algorithm. 
Data: c=45, dt=p/18, s=16, k=1 

 

Figure 5: The torus surface T(u, v) and its offset surface off(T(u, v); s)  Figure 6: The arrangement of the points 
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Result: 

v     e          xQ1          zQ1          dpq1 

10    0,99       55,765686    60,148874    0,164491 

20    0,99      109,871472    57,625808    0,641438 

30    0,969855   94,423220    53,824826    0,999993 

40    0,927695   81,961875    48,786076    0,999978 

50    0,901485   86,523090    42,256581    0,999955 

60    0,89637    97,045264    34,397474    0,999973 

70    0,913535  115,136695    25,393293    0,999998 

80    0,952735  158,845361    15,344069    0,999909 

Conclusions 

The paper describes the problem of approximation of the spheroid offset surface off(S(u, v); s) 

at distance s by the spheroid S1(u, v). In section 3 useful formulas for coordinates of points P1 

and Q1 (for any point P) were calculated. Section 4 presents the method of determining 

parameter values for the offset surface off(S(u, v); s) and for the surface S1(u, v) (which 

approximates it). If the parameter values are correctly selected, the distance between one 

surface and the other one does not exceed the given deviation k. Section 5 contains the 

justification of the fact that the torus surface T(u, v) and its offset surface off(T(u, v); s) are of 

the same type. Section 6 contains the algorithm which finds such parameter values for the 

spheroid offset surface off(S(u, v); s)) and for the spheroid surface S1(u, v) that the deviation 

between these surfaces does not exceed the set value k. 
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APROKSYMACJA POWIERZCHNI OFFSETOWEJ ELIPSOIDY 

I POWIERZCHNIA OFFSETOWA TORUSA 

W niniejszej pracy rozważa się kwestię aproksymacji powierzchni offsetowej elipsoidy off(S(u, 

v); s) o odległości s przez elipsoidę S1(u, v). Umiejętność doboru odpowiednich wartości 

parametrów dla powierzchni elipsoidy i jej offsetu jest istotna ze względu na liczne 

zastosowania praktyczne elipsoidy spłaszczonej jako matematycznego modelu kuli ziemskiej. 

Prezentujemy algorytm, który zwraca odpowiednie wartości parametrów dla powierchni 

elipsoidy i jej offsetu. 

 


