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APPROXIMATION OF THE SPHEROID OFFSET SURFACE AND
THE TORUS OFFSET SURFACE

Anna BOROWSKA

Faculty of Computer Science,
Bialystok University of Technology, ul. Wiejska 45a, 15-351 Bialystok, Poland
e-mail: a.borowska@pb.edu.pl

Abstract. In this paper the issue of approximation of the spheroid offset surface off(S(u, v); s)
at distance s by the spheroid surface S;(u, v) is considered. The problem of determining the
appropriate parameter values for the spheroid offset surface off(S(u, v); s) is important due to
the numerous practical applications of the spheroid as a mathematical model of the Earth. We
present the algorithm which gives the appropriate parameter values for the spheroid surface
S(u, v) and its offset surface off(S(u, v); ).

Keywords: spheroid offset surfaces, torus, approximation, geoid

1 Introduction
An oblate spheroid (with semi-axes a=b and c) (cf. Fig. 1) and concentric with it spheroids
(with semi-axes ats, ats and cts) are used as models for imaging and studying phenomena
related to the surface of the Earth and factors which cause changes on (and under) its surface.
An oblate spheroid is the next, after a geoid, the reference surface approximating the shape
of the Earth. In contrast to the geoid, it can be described analytically. The oblate spheroid was
introduced to geodesy to investigate and clearly describe the mathematical relationships
between elements of the geodetic network projected onto the surface of the ellipsoid, calculate
the coordinates of the points of the network so that maps could be made on the basis
ofthe network (cf. [2]).

Figure 1: The oblate spheroid (a=b=4, c=8) Figure 2: The three-axis ellipsoid (a=4, b=8, c=0)

In many cases, instead of concentric spheroids, it is more convenient to use
the spheroid offset surfaces (especially when phenomena propagating perpendicular to
the surface of the spheroid are investigated). The distance between any point P of the spheroid
surface S(u, v) and the point P; of the spheroid offset surface off(S(u, v); s)) (along the normal
line at the point P) is constant. Concentric spheroids do not have this property. It is an
important task to find the appropriate parameters for the ellipsoid offset surface off(S(u, v); s))
and for the ellipsoid Si(u, v) (which approximates the offset off(S(u, v); s5))). The deviation
between these surfaces must not exceed the fixed value k.

ISSN 1644-9363 / PLN 15.00 © 2018 PTGiGI



4 Borowska: Approximation of the Spheroid Offset Surface and the Torus Offset Surface

The paper describes two problems: (a) approximation of the spheroid offset surface
off(S(u, v); s)) by the spheroid S;(u, v) (sections 3, 4) and (b) approximation of the torus offset
surface off(T(u, v); s)) by the torus T;(u, v) (Section 5).

Let us assume that P is any point on the surface S and / is the normal line to S at
the point P. The point P; lies on the normal [ at distance s from P. (Q; is the intersection point
of the normal line / with the surface ;.

Section 2 contains mathematical facts necessary to describe research results. In section
3 useful formulas for coordinates of points P, and Q; (for any point P) for surfaces off(iS(u, v);
s)) and S;(u, v) were determined. Section 5 delivers analogous formulas for the torus offset
surface off(T(u, v); s)). Section 4 contains the results of numerical analysis for the problem
of the approximation of the spheroid offset surface off(S(u, v); s)) by the spheroid S;(u, v).

2 Mathematical formulas
Let S(u, v) = (x(u, v), y(u, v), z(u, v)) (ue[u;, uz], ve [vy, v2]) be a smooth parametric surface
in 3-dimensional space. Ry = (xo, Yo, 20) 1s a fixed point of the surface S, n = ri(ug, vo) X r2(uo,
Vo) 1s a normal vector to the surface S at the point Ry. R = (x, y, z) is any point of a tangent
plane 7to the surface S at the point Ry. RoR = [x-xo, Y-Yo, 2-20] is a vector. Then the equation of
the tangent plane 7is of the form (cf. [6])

T:noRyR=0.
The symbol ° means the scalar product of vectors. The normal vector to the surface S at the
point Ry is defined as the vector product of vectors r; and r, (where r, r, are tangent vectors
to the surface S at the point Ry) (cf. [7])

n=n(ugy,vy) X (uy,vy) =

) 0z 07 ox ox 0
_ 3%(010,\/0) g(uo,vo) g(“o,vo) 3—M(M0,V0) g(“o,vo) ﬁ(uo,vo)
oy oz ox
ou (0:v0) du ou
The length of the vector is expressed as (cf. [6])

[nl= l”l(uo,VO)sz(uo,Vo) l=

’ ’ 0
(g v)| |2 (tgsv)) (V) —x(uo,vo) —y(uo,vo)
du du ou

dy Z 2 13z X 2 Jox dy 2
——(ug,vg) —ug,vo)| |[=(ug,vg) —(ug,vo)| |z (ug,vg) = (ug,vp)
= 1% % + o + 9 o
X X
i(uo,vo) i(“o,vo) i(uo,vo) g(“o,vo) g(uo,vo) i(“o,vo)

The unit normal vector to the surface § at the point Ry is of the form (cf. [6])
_ (g, vp)Xn (g, vo)

| I’l(uo,VO)sz(uo,Vo)l .
Definition 1 (an offset surface Sy at distance d) (cf. [8], p. 341)
For a given smooth surface S, we define an offset Sy at distance d as follows. On each surface
normal, we mark the two points that are at a constant distance d from the surface S. The set
of all of these points forms the offset surface S4. The offset surface Sq4(u, v) at distance d to
S(u, v) is obtained as S; (u,v) = S(u,v) *dnq (u,v).
The interesting offset surfaces (offset curves) are described in [5], [6] and [3].

ver

Lemma 1 (cf. [1]) If arccos(x) =arccos(y) and x+y >0 then X2+ y2 =1.
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3 Spheroid
Let S(u, v) and S;(u, v) be the concentric spheroid surfaces defined as follows (cf. [4], p. 238)
S(u, v) x =acos(u)sin(v), y=asin(u)sin(v), z =ccos(v) (D
Si1(u, v) x=(a+s)cos(u)sin(v), y = (a+s)sin(u)sin(v), z = (c+s)cos(v) 2)

where ue [0, 27, ve [0, .
The normal vector to the surface S(u, v) at the point P is of the form

n=nugy,vy)Xr(uy,vy)=
= l— ac cos(ug ) sin 2 (vg),—acsin(ug) sin 2 (vg).—a 2 sin(vg ) cos(vy )J
The unit normal vector to S(u, v) at the point P is expressed as follows
_ n (ug,vo)Xry(ug,vg) _
I (ug,vo)xr (ug,vp) |

ver

l— ac cos(ug ) sin(vg ),—ac sin(ug ) sin(vy ),—a 2 cos(vg )J

) \/(ac cos(ug ) sin(vg ))2 + (acsin(ug ) sin(v ))2 + (a2 cos(vy ))2

The equation of the spheroid offset surfaces is as follows
off (S(u,v);8):[X.Y,Z]=

sl— ac cos(u) sin(v),—ac sin(u) sin(v),—a 2 cos(v)J

=[x, y,z]* 3)

V(ac cos(u) sin(v))2 + (ac sin(u) sin())2 + (a2 cos(v))?

Figure 3 shows the (green) fragment of the three-axis ellipsoid S(u, v) (for a=3, b=4,
c=6, u, ve [0, 772]) and the larger (blue) ellipsoid offset surface off(S(u, v); s) for s=1. Figure 4
shows the (green) fragment of the three-axis ellipsoid S(u, v) and the smaller (blue) ellipsoid
offset surface off(S(u, v); s). The offset (Fig. 3) and the fragment of the ellipsoid (Fg. 4) were
cut out to show the ellipsoid (Fig. 3), the offset (Fig. 4).

- 4//

Figure 3: Fragment of the ellipsoid S(u, v) (a=3, b=4, c=6, u, ve [0, 72]) and the offset surface off(S(u, v); s)

Let us determine the coordinates of the point P; lying on the normal / to the spheroid
surface S(u, v) (at the point P) and distant from P by the length s. We use the equation of the
spheroid offset surfaces (cf. (3)). The coordinates of the point P; are expressed as follows

scx sa* cos(vp)

sC
xPl =xp+ P , yPl :yp+%, ZPI =zp+ , Where (4)

w

W:\/(CXP)2+(CyP)2 +(a2cos(vo))2 ,
xp =acos(ug)sin(vy), yp =asin(ug)sin(vy), zp =ccos(vg)
The coordinates of the point Q; (the intersection of the normal line / to the surface S(u, v) at

the point P with the surface S;(u, v)) were determined as follows. Let us write down the
parametric equations of the normal line [ to the spheroid surface S(u, v) at the point P

ISSN 1644-9363 / PLN 15.00 © 2018 PTGiGI



6 Borowska: Approximation of the Spheroid Offset Surface and the Torus Offset Surface

x=acos(ug)sin(vy )1+ hcsin(vgy))
y=asin(ug)sin(vg )1+ hcsin(vy)), uoe [0, 271, voe [0, 7], he R 5

z=cos(vg)(c+ha? sin(vp)).

Let us assume that upe [0, 2], voe [0, 2] and set the parameter & giving the intersection
points of the line / with the surface S;(u, v) (cf. (2)). The normal / and the axis Z lie on the
same plane, therefore (after simplification) we obtain

asin(vy)(1+ hcsin(vg)) = (a+ s)sin(@)
{ 5 . ~ . From here
cos(vg)(c+ha” sin(vy)) = (c+ ) cos(@)
@ = arcsin(a sin(v( )(1+ hcsin(v( ))/(a +5)) (6)
@ = arccos(cos(vg)(c + ha* sin(vg)) / (c+s)). Hence and from lemma 1 we have
((asin(vg)(1+ hesin(vg)))/(a+ )2 +((cos(vy )(c + ha? sin(vg)))/(c + )2 =1. Hence

Ah% +Bh+C =0, where

A=a? sinz(vo)((c + s)2c2 sinz(vo) +(a+ s)2a2 cosz(vo))

B =2a’csin(vg)((c + 5) sin>(vy) + (a + s)% cos® (vy))

C= (c+s)2a2 sinz(v0)+ (a+s)2c2 cosz(vo)—(a+s)2(c+ s)2
For A=B2—4AC>0, hj =(~B+~4)/2A, hy = (=B —/4)/24A.

Xg =a cos(uq) sin(vg )1+ hycsin(v())

Yo, =a sin(ug ) sin(vg )1+ hycsin(vgy )) @)

29, = cos(v )(c+h1a2 sin(vg)) .

4 Parameter analysis for the spheroid offset surfaces
The approximation of the spheroid offset surface off(S(u, v); s) by the spheroid surface S;(u, v)

is satisfactory if for any point P of the spheroid surface S we have | PO I=d PO, S k for a
fixed k (cf. [1], [3]).

We define the eccentricity as e =+/1—(c/ a)2 . In this section such ranges of parameter

values e, s were determined that the approximation of the spheroid offset surface off(S(u, v); s)
by the spheroid surface S;(u, v) is satisfactory for k=1 (the acceptable deviation between the
surfaces). Numerical analysis was carried out for the larger offset surfaces.

In order to check if the approximation of the offset surface off(S(u, v); s) by the surface
S1(u, v) is satisfactory, one of the following problems should be solved.

(A) We have the semi-axis ¢, a length s and a deviation k. For the spheroid offset
surface off(S(u, v); s) we need to find such eccentricity ey, that for e [0, ey,,] and any point
P of the spheroid surface S the condition d PO, (e)<k is met.

(B) We have the semi-axis ¢, eccentricity e and a deviation k. For the spheroid offset
surface off(S(u, v); s) we need to find such a distance sy, that for se[1.5, spy.,] and any point
P of the spheroid surface S the condition d PO, (s)<k is met.
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4.1 Parameters vy, v,

In this section, for the (larger) spheroid offset surface off(S(u, v); s) and the spheroid surface
S1(u, v) the specific angles v; and v, were determined. For the established values ¢ and s and
the angle v, we calculate the value ey,,. For the established values ¢ and e and the angle v, we
calculate the value sy,,.

Test 1. The spheroid surfaces were considered for parameter values c¢=5, 10, ..., 100 and

e :wll—(c/a)2 . The length se[4, 100] was tested (every 1). The eccentricity ec[0, 1) was

taken (every 0.05). The permissible deviation is k=1. The angles v, v,€[0, 72) were taken
(every 36), the angle u=0°. The following facts have been verified for the larger spheroid
offset surfaces. For the assumed values ¢ and s, the value ey, occurs for vi=50° - 70° (see
Table 1). For the assumed values ¢ and e, the value s, occurs for v,=50° - 65° (see Table 2).

Table 1. For given ¢ and s the value ey, (such that for e [0, eyax] d RO, (e)<1) was obtained for the angle v,

v c=5 c=10 c=15 =20 c=25 =30 c=35 c=40 c=45 =50
v=70° se[4,8] se [4] se[4] - - - - - - -
v=65° s€[9,100] | se[5,14] se [5,8] se[4,7] se[4,7] se [4,6] se [4,6] se [4,6] se [4,6] se [4,6]
v=60° |- s€[15,100] | s€[9,100] | s€[8,47] | s€[8,25] | s€[7,20] | se[7,17] | s€[7,16] | se[7,15] | se[7,14]
y=55° - - - s€[48,100] | S€[26,100]|se[21,100] | s [18,100]|s€[17,100]|s€[16,100] |se[15,100]
c=55 c=60 c=65 c=70 c=75 c=80 c=85 =90 =95 ¢c=100

v=65° se[4,6] se [4,6] se [4,6] se [4,5] se [4,5] se[4,5] se[4,5] se[4,5] se[4,5] se[4,5]
v=60° se[7,14] | se[7,13] | se[7,13] | s€[6,13] | s€[6,12] | s€[6,12] | s€[6,12] | s€[6,12] | s€[6,12] | s€[6,12]
v=55°  |s€[15,100] |s€[14,100] | s€[14,100] |s€[14,100] | s€[13,85] | se[13,75] | s€[13,68] | s[13,63] | s€[13,59] | s[13,56]
v=50° - - - - Se[86,100]|s€[76,100] | s€[69,100] | s€ [64,100] | s€ [60,100] | se [57,100]

Table 2. For given ¢ and e the value sy, (such that for se [1.5, Syl d PO, (s)<1) was obtained for the angle v,

v c=5 c=10 c=15 =20 c=25 c=30 c=35 c=40 c=45 =50
[5°-85°] | e€[0,0.9] |e€[0,0.85]|E€[0,0.85]| e<[0,0.8] le€[0,0.8] [e€[0,0.8] le€[0,0.8] le€[0,0.75] le€[0,0.75] |lec[0,0.75]
v=55° - - - e€[0.85] | e€[0.85] | e€[0.85] | e€[0.85] |ee[0.8,0.85]fec[0.8,0.85] e [0.8,0.9]
v=60° - ec[0.9] | e€[0.9] |e€[0.9,0.95]fe€[0.9,0.95]ec[0.9,0.95]fe€ [0.9,0.95]ec [0.9,0.95]ec[0.9,0.95]] ec[0.95]
v=65° |e€[0.95] | e€[0.95] | e€[0.95] - - - - -
c=55 =60 c=65 c=70 c=75 =80 c=85 =90 c=95 =100
[5°-85°] |e€[0,0.75]|e€[0,0.75]|E€[0,0.75]| e€[0,0.75] | e€[0,0.7] | e€[0,0.7] | e€[0,0.7] | e€[0,0.7] | e€[0,0.7] | e€[0,0.7]
v=50° - - - - ec[0.75] | e€[0.75] | e[0.75] | e[0.75] | e€[0.75] | ee[0.75]
v=55°  |e€[0.8,0.9]e [0.8,0.9]|E€[0.8,0.9] € [0.8,0.9]|e€[0.7,0.9]|e€[0.8,0.9] | e [0.8,0.9] | e [0.8,0.9] | e [0.8,0.9] | e [0.8,0.9]
v=60° e€[0.95] | e€[0.95] | e€[0.95] | e€[0.95] | e€[0.95] | e€[0.95] | e€[0.95] | e€[0.95] | e€[0.95] | e[0.95]

Example 1. Let us assume that ¢=35 and k=1. We need to find such length of the semi-axis a
so that the approximation of the offset surface off(S(u, v); s) by the surface S;(u, v) is
satisfactory. (a) s=10, (b) s=20.

(a) Let s=10. We determine the values ey, for vi=60° (see Table 1 and 3), because ¢=35 and
s=10e[7, 17]. The approximation will be satisfactory if we choose a<96.542 (Table 3).

(b) Let s=20. We determine the values e, for v,=55° (see Table 1 and 3), because ¢=35 and
s=20e[18, 100]. The approximation will be satisfactory if we choose a<75.316 (Table 3).

Table 3. The values ey, (ama) (sSuch that for e€ [0, epa] d PO, (s)<1) for given c, s and the angle v,=60° /

v;=55°

The values ey (auma) for given s, ¢ and the angle v=60°

s=4 s=10 s=20 s=30 s=40 s=50 s=60 s=70 s=80 s=90 s=100

ena=0.983 | 0.932 0.886 0.86 0.844 0.832 0.824 0.817 0.812 0.807 0.804
(amax=191.1) [(96.542)| (75.443) | (68.648) | (65.215) | (63.128) (61.72) | (60.704) | (59.937) | (59.335) | (58.851)
The values ey, (anay) for given s, ¢ and the angle v;=55°

s=4 s=10 s=20 s=30 s=40 5s=50 5s=60 s=70 5s=80 5s=90 s=100

ema=0.987 | 0.934 0.885 0.858 0.841 0.829 0.82 0.814 0.808 0.804 0.8

(ama=221.702)((98.097)| (75.316) | (68.271) | (64.763) | (62.646) | (61.225) | (60.203) | (59.432) | (58.829) | (58.344)

ISSN 1644-9363 / PLN 15.00 © 2018 PTGiGI



8 Borowska: Approximation of the Spheroid Offset Surface and the Torus Offset Surface

Example 2. Let us assume, that ¢=35 and k=1. We need to find such length s so that the
approximation of the offset surface off(S(u, v); s) by the surface S;(u, v) is satisfactory. (a)
a=80 (e=0.899218411).

(a) Let a=80. We determine the values sy, for v,=60° (see Table 2 and 4). The approximation
will be satisfactory if we choose s<s),,=16.357 (see Table 4).

Table 4. The values Sy, (such that for se[1.5, syax] d PO, (s)<1) for given c, e and the angle v,=60°. The [+]

symbol means: d PO, (8)<1 for se [4, syaxl

The values sy, for given e, ¢ and the angle v,=60°
e=0 e=0.1 e=0.2 e=0.3 e=0.4 e=0.5 e=0.6 e=0.7 e=0.8 [¢=0.899218 ¢=0.9
Shax=[+] [+] [+] [+] [+ [+ [+] [+] [+] 16357 [16.168
5 Torus
Let T(u, v) and T)(u, v) be the torus surfaces defined as follows
T(u, v) x =cos(u)(R+rcos(v)), y=sin(u)(R+rcos(v)), z=rsin(v) 8)

T1(u, v) x=cos(u)(R+(r+s)cos(v)), y=sin(u)(R+(r+s)cos(v)), z=(r+s)sin(v) (9)
where ue [0, 27], ve [0, 27].
The normal vector to the torus 7(u, v) at the point P is of the form
n=r(ug,vy)Xry(ug,vg) =
= [r cos(ug) cos(vg)(R + r cos(vg)), r sin(ug ) cos(vy ) (R + rcos(vy)), r sin(vy )(R + r cos(v ))]
The unit normal vector to 7(u, v) at the point P is expressed as follows
_ n(ug,ve)Xr(ug,vy)
I ry(ug,vo)Xr(ug,vo)l
The equation of the torus offset surfaces is of the form
off T (u,v);s):[X,Y,Z]=[x,y,z]x s[cos(u)cos(v),sin(u)cos(v),sin(v)]
The torus surface T(u, v) and its offset surfaces off(T(u, v); s) are of the same type.

Clever proof. The surface T(u, v) is defined above (cf. (8)). Let us write down the parametric
equations of the normal line / to the torus surface T(u, v) at the point P (he R)

x=cos(ug)(R+rcos(vy))+hcos(ug)cos(vy) x =cos(ug)(R+ (r +h)cos(vy))

ver = [cos(uq ) cos(vq),sin(uq) cos(vy ),sin(vy )]

y =sin(uq)(R +rcos(vy)) + hsin(ug)cos(vy) . Hence §y = sin(ugp)(R + (r + h) cos(vy))
z=rsin(vy)+hsin(vg) z = (r+h)sin(vq)
uoe [0, 27, voe [0, 277]. We obtained the equations of the surface T'(u, v) (cf. (9)) for h=s.
The coordinates of the point P; lying on the normal [ to the torus surface 7T(u, v) (at the
point P) and distant from P by the length s:
Xp =Xg, = cos(ug )(R+(r+s)cos(vy))
Yp =Xg, = sin(ug )(R+(r +s)cos(vy))

ip =X, = (r+s)sin(vg)
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Figure 5: The torus surface T(u, v) and its offset surface off(T(u, v); s) Figure 6: The arrangement of the points

6 Algorithm
The algorithm presented below finds such parameter values for the spheroid offset surface
off(S(u, v); s)) and for the spheroid S;(u, v) that the deviation between these surfaces does not
exceed the fixed value k. The user gives parameter values (the semi-axis ¢, a length s and a
deviation k) and receives such value ey, that for each value e€ [0, epy,,] the approximation of
the offset surface off(S(u, v); s) by the surface S;(u, v) is satisfactory.
Justification of the algorithm. The surfaces S(u, v) and S;(u, v) are defined in section 3
(cf. (1), (2)). We limit the calculations to the fragment of the spheroid surface for ue [0, 72],
ve [0, 72]. The normal / and the axis Z lie on the same plane, so we can assume that u=0°.
The points P, Py, Q1, D; and the normal line / are defined in Figure 6. The point B; belongs to
the surface S;(u, v) for u=0° and has the same coordinate x as the point D; (see Figure 6). The
algorithm for consecutive angles ve [0, 7/2] (taken every df) calculates the value ey, and then
(for the value ey,,) computes the coordinates of the points P, Py, D;, Q; and the distance
dPlQl :
void elipsoida::Algo3D(double dt, double s, double k) {
//definitions of variables
i=1; wv=dt;
while (v<M_PI/2) {
e=0; bl=0;
while (e<0.99) {

a=sqgrt ((c*c)/(1-(e*e)));

xP=a*sin (V) ; zP=c*cos (V) ;

w=pow ( (c/a)*tan(v),2);

xP1l=xP+s*sqrt (w/ (1+w)) ; zP1l=2zP+s/sqrt (1+w) ;

xD1=xP+ (s—k) *sqrt (w/ (1+w)); zDl=zP+(s—-k)/sqrt (1l+w);

fi=asin(xD1l/ (a+s));

zBl=(c+s) *cos (fi);

if (zB1>2zD1) {e+=0.000005; bl=1;}else{e-=0.000005; if (bl)break;}}

a=sqrt ((c*c)/(1-(e*e)));

xP=a*sin (v) ; zP=c*cos (V) ;

w=pow ( (c/a)*tan(v),2);

xPl=xP+s*sqrt (w/ (1+w)) ; zP1l=zP+s/sqrt (1+w) ;

xD1=xP+ (s—k) *sqrt (w/ (1+w)) ; zD1=zP+ (s-k) /sqrt (1+w) ;

xXQl=(a+s) *sin(fi); zQl=(c+s) *cos (fi);

dpgl=sqgrt (pow ( (xQ1-xP1l),2)+pow ((zQ1l-zP1),2));

cout << v << " "M << e << """ o< x01 << " " << zQ1 << " " << dpgl;

i++; v=ixdt;}}

Results of the algorithm.
Data: c=45, dt=p/18, s=16, k=1

ISSN 1644-9363 / PLN 15.00 © 2018 PTGiGI
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Result:

v e xQ1 zQ1 dpgl

10 0,99 55, 765686 60,148874 0,164491
20 0,99 109,871472 57,625808 0,641438
30 0,969855 94,423220 53,824826 0,999993
40 0,927695 81,961875 48, 786076 0,999978
50 0,901485 86,523090 42,256581 0,999955
60 0,89637 97,045264 34,397474 0,999973
70 0,913535 115,136695 25,393293 0,999998
80 0,952735 158,845361 15,344069 0,999909
Conclusions

The paper describes the problem of approximation of the spheroid offset surface off(S(u, v); s)
at distance s by the spheroid S;(u, v). In section 3 useful formulas for coordinates of points P;
and Q; (for any point P) were calculated. Section 4 presents the method of determining
parameter values for the offset surface off(S(u, v); s) and for the surface S;(u, v) (which
approximates it). If the parameter values are correctly selected, the distance between one
surface and the other one does not exceed the given deviation k. Section 5 contains the
justification of the fact that the torus surface 7(u, v) and its offset surface off(T(u, v); s) are of
the same type. Section 6 contains the algorithm which finds such parameter values for the
spheroid offset surface off(S(u, v); s)) and for the spheroid surface S;(u, v) that the deviation
between these surfaces does not exceed the set value k.
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APROKSYMACJA POWIERZCHNI OFFSETOWE] ELIPSOIDY
I POWIERZCHNIA OFFSETOWA TORUSA

W niniejszej pracy rozwaza si¢ kwesti¢ aproksymacji powierzchni offsetowej elipsoidy off(S(u,
v); §) o odlegtosci s przez elipsoide Si(u, v). Umiejetnos¢ doboru odpowiednich wartosci
parametréw dla powierzchni elipsoidy 1 jej offsetu jest istotna ze wzgledu na liczne
zastosowania praktyczne elipsoidy splaszczonej jako matematycznego modelu kuli ziemskie;j.
Prezentujemy algorytm, ktéry zwraca odpowiednie wartosci parametréw dla powierchni
elipsoidy i jej offsetu.



