Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let Ω be a C2 bounded domain in Rn such that ∂Ω = Γ1 ∪ Γ2, where Γ1 and Γ2 are disjoint closed subsets of ∂Ω, and consider the problem −Δu = g(·, u) in Ω, u = τ on Γ1, ∂u ∂ν = η on Γ2, where 0 ≤ τ ∈ W 1 2 ,2(Γ1), η ∈ (H1 0, Γ1(Ω))′, and g : Ω×(0,∞) → R is a nonnegative Carathéodory function. Under suitable assumptions on g and η we prove the existence and uniqueness of a positive weak solution of this problem. Our assumptions allow g to be singular at s = 0 and also at x ∈ S for some suitable subsets S ⊂ Ω. The Dirichlet problem −Δu = g(·, u) in Ω, u = σ on ∂Ω is also studied in the case when 0 ≤ σ ∈ W 1 2 ,2(Ω).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
19--46
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
autor
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Av. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
Bibliografia
- [1] R.A. Adams, Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.
- [2] R.P. Agarwal, K. Perera, D. O’Regan, A variational approach to singular quasilinear problems with sign changing nonlinearities, Appl. Anal. 85 (2006), no. 10, 1201–1206.
- [3] I. Bachar, H. Mâagli, V. Rădulescu, Singular solutions of a nonlinear elliptic equation in a punctured domain, Electron. J. Qual. Theory Differ. Equ. 2017, Paper no. 94.
- [4] B. Bougherara, J. Giacomoni, Existence of mild solutions for a singular parabolic equation and stabilization, Adv. Nonlinear Anal. 4 (2015), no. 2, 123–134.
- [5] B. Bougherara, J. Giacomoni, J. Hernández, Existence and regularity of weak solutions for singular elliptic problems, Proceedings of the 2014 Madrid Conference on Applied Mathematics in honor of Alfonso Casal, 19–30, Electron. J. Differ. Equ. Conf. 22, Texas State Univ., San Marcos, TX, 2015.
- [6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
- [7] H. Brezis, X. Cabre, Some simple nonlinear PDE’s without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1 (1998), no. 2, 223–262.
- [8] A. Callegari, A. Nachman, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), no. 2, 275–281.
- [9] Y. Chu, Y. Gao, W. Gao, Existence of solutions to a class of semilinear elliptic problem with nonlinear singular terms and variable exponent, J. Funct. Spaces (2016), Art. ID 9794739.
- [10] F. Cîrstea, M. Ghergu, V. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane–Emden–Fowler type, J. Math. Pures Appl. 84 (2005), no. 4, 493–508.
- [11] M.M. Coclite, G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations 14 (1989), no. 10, 1315–1327.
- [12] D.S. Cohen, H.B. Keller, Some positive problems suggested by nonlinear heat generators, J. Math. Mech. 16 (1967), 1361–1376.
- [13] M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), no. 2, 193–222.
- [14] M. Cuesta, P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations 13 (2000), no. 4–6, 721–746.
- [15] M.A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 3–4, 341–352.
- [16] J.I. Diaz, J. Hernández, Positive and free boundary solutions to singular nonlinear elliptic problems with absorption: an overview and open problems, Electron. J. Differ. Equ. Conf. 21 (2014), 31–44.
- [17] J.I. Diaz, J. Hernandez, J.M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math. 79 (2011), Article no. 233.
- [18] J.I. Diaz, J.M. Morel, L. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), no. 12, 1333–1344.
- [19] L. Dupaigne, M. Ghergu, V. Rădulescu, Lane–Emden–Fowler equations with convection and singular potential, J. Math. Pures Appl. 87 (2007), no. 6, 563–581.
- [20] P. Feng, On the structure of positive solutions to an elliptic problem arising in thin film equations, J. Math. Anal. Appl. 370 (2010), no. 2, 573–583.
- [21] W. Fulks, J.S. Maybee, A singular nonlinear equation, Osaka J. Math. 12 (1960), 1–19.
- [22] L. Gasiński, N.S. Papageorgiou, Nonlinear elliptic equations with singular terms and combined nonlinearities, Ann. Henri Poincaré 13 (2012), no. 3, 481–512.
- [23] M. Ghergu, V.D. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, vol. 37, The Clarendon Press, Oxford University Press, Oxford, 2008.
- [24] M. Ghergu, V.D. Rădulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, Springer-Verlag, Berlin, Heidelberg, New York, 2012.
- [25] M. Ghergu, V.D. Rădulescu, Bifurcation and asymptotics for the Lane–Emden–Fowler equation, C. R. Math. Acad. Sci. Paris 337 (2003), no. 4, 259–264.
- [26] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, 2001.
- [27] T. Godoy, Strong solutions for singular Dirichlet elliptic problems, Electron. J. Qual. Theory Differ. Equ. 2022, Paper no. 40, 1–20.
- [28] T. Godoy, A. Guerin, Positive weak solutions of elliptic Dirichlet problems with singularities in both the dependent and the independent variables, Electron. J. Qual. Theory Differ. Equ. 2019, Paper no. 54, 1–17.
- [29] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Marshfield, Massachusetts, 1985.
- [30] J. Janus, J. Myjak, A generalizad Emden–Fowler equation with a negative exponent, Nonlinear Anal. 23 (1994), no. 8, 953–970.
- [31] A.C. Lazer, P.J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), no. 3, 721–730.
- [32] Q. Li, W. Gao, Existence of weak solutions to a class of singular elliptic equations, Mediterr. J. Math. 13 (2016), no. 6, 4917–4927.
- [33] H. Mâagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal. 74 (2011), no. 9, 2941–2947.
- [34] L. Ma, J.C. Wei, Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal. 254 (2008), no. 4, 1058–1087.
- [35] M. Montenegro, A.C. Ponce, The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2429–2438.
- [36] F. Oliva, F. Petitta, Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness, J. Differential Equations 264 (2018), no. 1, 311–340.
- [37] N.S. Papageorgiou, G. Smyrlis, Nonlinear elliptic equations with singular reaction, Osaka J. Math. 53 (2016), no. 2, 489–514.
- [38] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis, Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019.
- [39] K. Perera, E.A. Silva, Multiple positive solutions of singular p-Laplacian problems via variational methods, [in:] Differential & Difference Equations and Applications, Hindawi Publ. Corp., New York, 2006, pp. 915–924.
- [40] K. Perera, E.A. Silva, On singular p-Laplacian problems, Differential Integral Equations 20 (2007), no. 1, 105–120.
- [41] V.D. Rădulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, [in:] Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, Elsevier/North-Holland, Amsterdam, 2007, pp. 483–591.
- [42] J. Sabina de Lis, Hopf maximum principle revisited, Electron. J. Differential Equations 2015, no. 115, 9 pp.
- [43] S. Salsa, Partial Differential Equations in Action – From Modelling to Theory, Springer, Milan, Berlin, Heidelberg, New York, 2008.
- [44] J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1389–1401.
- [45] J. Shi, M. Yao, Positive solutions for elliptic equations with singular nonlinearity, Electron. J. Qual. Theory Differ. Equ. 2005, no. 04, 11 pp.
- [46] C.A. Stuart, Existence and approximation of solutions of nonlinear elliptic problems, Mathematics Report, Battelle Advanced Studies Center, Geneva, Switzerland, vol. 86, 1976.
- [47] S. Yijing, Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial Differential Equations 49 (2014), no. 3–4, 909–922.
- [48] Z. Zhang, The asymptotic behaviour of the unique solution for the singular Lane–Emden–Fowler equation, J. Math. Anal. Appl. 312 (2005), no. 1, 33–43.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c83038c-efda-4a20-8ca9-b770d1125fdd