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SINGULAR ELLIPTIC PROBLEMS
WITH DIRICHLET OR MIXED DIRICHLET–NEUMANN

NON-HOMOGENEOUS BOUNDARY CONDITIONS
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Abstract. Let Ω be a C2 bounded domain in Rn such that ∂Ω = Γ1 ∪ Γ2, where
Γ1 and Γ2 are disjoint closed subsets of ∂Ω, and consider the problem −∆u = g(·, u)
in Ω, u = τ on Γ1, ∂u

∂ν = η on Γ2, where 0 ≤ τ ∈ W
1
2 ,2(Γ1), η ∈ (H1

0,Γ1
(Ω))′, and

g : Ω×(0,∞) → R is a nonnegative Carathéodory function. Under suitable assumptions
on g and η we prove the existence and uniqueness of a positive weak solution of this
problem. Our assumptions allow g to be singular at s = 0 and also at x ∈ S for some
suitable subsets S ⊂ Ω. The Dirichlet problem −∆u = g(·, u) in Ω, u = σ on ∂Ω is also
studied in the case when 0 ≤ σ ∈ W

1
2 ,2(Ω).
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let Ω be a C2 and bounded domain in Rn such that ∂Ω = Γ1 ∪ Γ2, with Γ1 and Γ2
disjoint closed subsets of ∂Ω. Our aim in this paper is to state existence and uniqueness
results for weak solutions u ∈ H1(Ω) of possibly singular elliptic Dirichlet problems of
the form 




−∆u = g(·, u) in Ω,
u = σ on ∂Ω,
u > 0 in Ω,

(1.1)

as well as of possibly singular problems with mixed boundary conditions of the form




−∆u = g(·, u) in Ω,
u = τ on Γ1,
∂u
∂ν = η on Γ2,

u > 0 in Ω,

(1.2)
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where g : Ω × (0,∞) → [0,∞) is a suitable nonnegative Carathéodory function g(x, s)
which may be singular at s = 0 and at x ∈ S for some suitable subsets S ⊂ Ω, and, in
problem (1.1), σ ∈ H

1
2 (∂Ω), whereas in problem (1.2), τ ∈ H

1
2 (Γ1) and η is a suitable

function defined on Γ2.
Singular elliptic problems appear in the study of many nonlinear physical phenom-

ena: thin films of viscous fluids, chemical catalysis, non-Newtonian fluids, temperature
of some electrical conductors, response of a membrane cap under heavy loads, Van
der Waal forces, as well as in the study of micro electro-mechanical devices (see, e.g.,
[8, 12,18,20,21,30,34] and the references therein).

In [13], problem (1.1) was studied in the case σ = 0 (i.e., with homogeneous
Dirichlet boundary condition) and there it was proved that if g ∈ C1(

Ω × (0,∞)
)

satisfies that g(x, ·) is nonincreasing on (0,∞) for any x ∈ Ω and lims→0+ g(x, s) = ∞
uniformly on Ω, then (1.1) has a unique classical solutions u ∈ C2(Ω) ∩ C

(
Ω

)
.

In [21,46], and [45], problem (1.1) was addressed when σ ̸= 0 (non homogeneous
Dirichlet boundary condition) obtaining, again in this case, existence and uniqueness
of classical solutions when σ is regular enough.

In [11], existence and nonexistence results were obtained for classical solutions
of singular bifurcation problems whose model problem is −∆u = u−α + λup in Ω,
u = 0 on ∂Ω, u > 0 in Ω, where α > 0, λ > 0, and p > 1, and there it was proved
that there exists λ∗ ∈ (0,∞) such that for λ < λ∗ there exists at least a solution
and for λ > λ∗ no such a solution exists. In [18] it was studied the problem with
a parameter −∆u = λf − u−α in Ω, u = 0 on ∂Ω, u > 0 in Ω, u−α ∈ L1(Ω), where
λ > 0, 0 < α < 1, and 0 ≤ f ∈ L1(Ω). It turns out that the situation is the opposite
of that in [11]: there exists λ∗ ∈ (0,∞) such that for λ > λ∗ there exists at least
a solution and for λ < λ∗ no such a solution exists.

In [31] it was studied the model problem

−∆u = k(x)u−α in Ω, u = 0 on ∂Ω, u > 0 in Ω. (1.3)

There it was proved that if Ω is a C2+β bounded domain for some β ∈ (0, 1), and
k ∈ Cβ(Ω) satisfies minΩ k > 0 then, for any α > 0, problem (1.3) has a unique
classical solution u ∈ C2+β(Ω) ∩ C(Ω) which belongs to C1(Ω) if α < 1, and belongs
to H1

0 (Ω) if and only if α < 3. Moreover, if α > 1 then 1
cφ

2
1+α

1 ≤ u ≤ cφ
2

1+α

1 in Ω,
where c is a positive constant and φ1 is a positive eigenfunction corresponding to the
first eigenvalue for −∆ on Ω with homogeneous Dirichlet boundary condition.

After [31], several works studied problem (1.3) under weaker regularity assumptions
on k and, in some of them, for more general differential operators than the Laplacian,
as well as for more general nonlinearities.

In [15] it was stated the existence and uniqueness of a weak solution u ∈ H1
0 (Ω) of

problem (1.3) in the case when k is a nonnegative and nonidentically zero function
in L∞(Ω), and, for such a u, a global bound for ∇u was obtained. Let us mention
some of them.

In [47] it was proved, among other results, that if α > 1, k ∈ L1(Ω) and k > 0 a.e.
in Ω, then (1.3) has a weak solution u ∈ H1

0 (Ω) if and only if there exists u0 ∈ H1
0 (Ω)
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such that
∫

Ω ku
1−α
0 < ∞. These results were extended in [32] to the case where the

Laplacian is replaced by the p-Laplacian operator.
Singular problems for differential operators (including the p-Laplacian) more

general than the Laplacian and/or with more general nonlinearities were also studied
in [2, 22,32,37,39,48] and [40].

Singular problems on punctured domains were studied in [3]. The paper [9] addressed
problem (1.1) in the case where α = α(x) (variable exponent). In [5], [28, 33] and [17]
it was studied the existence of solutions (either classical or weak or very weak) of (1.3)
in the case where k behaves like ( dist(·, ∂Ω))−β for some β > 0, and in [36] it was
considered the case where k is either a nonnegative function in L1(Ω) or a bounded
Radon measure on Ω.

In [44] existence and nonexistence results were given for the problem with a pa-
rameter −∆u = k(x)u−α + λup in Ω, u = 0 on ∂Ω, u > 0 in Ω in the case where
α, p ∈ (0, 1), and k may change sign.

Existence results for classical solutions of Lane–Emden–Fowler equations with
convection and singular potential were obtained in [19], and related problems were
studied in [10,25] and [4].

Let us mention also that in [30] it was studied the existence of positive classical
solutions of the one-dimensional singular problem

−u′′(t) = f(t)u−β(t) + h(t) on (0, 1), (1.4)
where β > 0, f and h belong to C(0, 1), f > 0 in (0, 1), and

1∫

0

t(1 − t)(f(t) + |h(t)|) < ∞,

and with u such that one of the following boundary conditions holds:
u(0) = a, u(1) = b, (1.5)
u(0) = a, u′(1) = c. (1.6)

In [30, Theorem 1.1] it was proved that, if a ≥ 0 and b ≥ 0, then problem (1.4), with
boundary conditions (1.5), has a unique classical solution; and in [30, Theorem 1.2]
it was proved that problem (1.4), with boundary conditions (1.6), has a unique positive
solution if c > c0 := inf{u′

ξ(1) : ξ > 0}, and has no positive solution if c < c0, where,
for ξ > 0, uξ is the solution, provided by [30, Theorem 1.1], of problem (1.4) with
boundary conditions u(0) = a, u(1) = ξ.

The interested reader will find an updated account, concerning the topic of singular
elliptic Dirichlet problems, as well as additional references, in the research books
[23,24,41]. See also [16].

As said before, we are interested in the existence and uniqueness of weak solutions
of problems (1.1) and (1.2). More specifically, our interest is to obtain a sort of
n-dimensional analogous of the above quoted (Theorems 1.1 and 1.2 of [30]).

For a function u ∈ H1(Ω) the value of u on ∂Ω (or on Γ1, or on Γ2) will be always
understood in the sense of the trace. Let us present the notion of weak solutions of
Dirichlet problems we use.
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Definition 1.1. Let f : Ω → R be such that fφ ∈ L1(Ω) for any φ ∈ H1
0 (Ω), and let

σ : ∂Ω → R. We say that u : Ω → R is a weak solution of the problem
{

−∆u = f in Ω,
u = σ on ∂Ω

(1.7)

if u ∈ H1(Ω), u = σ on ∂Ω, and
∫

Ω

⟨∇u,∇φ⟩ =
∫

Ω

fφ for any φ ∈ H1
0 (Ω). (1.8)

For a function f : Ω → R, we will write f ∈ (H1
0 (Ω))′ to mean that

fφ ∈ L1(Ω) for any φ ∈ H1
0 (Ω), and that there exists a positive constant c such

that
∣∣∫

Ω fφ
∣∣ ≤ c ∥φ∥H1

0 (Ω) for any φ ∈ H1
0 (Ω).

Remark 1.2. If f ∈ (H1
0 (Ω))′ and σ ∈ H

1
2 (∂Ω), then problem (1.7) has a unique

weak solution u ∈ H1(Ω), and there exists a positive constant c, independent of f
and σ, such that

∥u∥H1(Ω) ≤ c
(

∥f∥(H1
0 (Ω))′ + ∥σ∥

H
1
2 (∂Ω)

)
,

for a proof of this fact see, e.g., [43, Section 8.4.1] (there it is assumed that f ∈ L2(Ω),
but the arguments given there works also when f ∈ (H1

0 (Ω))′).

For S ⊂ Ω we will denote by ρS the distance function defined by

ρS(x) := dist(x, S) for x ∈ Ω,

and, for a Lebesgue measurable subset E of Ω, |E| will denote the Lebesgue measure
of E.

We recall that a function g : Ω × (0,∞) → R is called a Carathéodory function if
g(·, s) is Lebesgue measurable for any s ∈ (0,∞) and g(x, ·) is continuous on (0,∞)
for a.e. x ∈ Ω. Our first result, concerning problem (1.1), reads as follows:

Theorem 1.3. Let Ω be a C2 and bounded domain in Rn. Let g : Ω × (0,∞) → [0,∞)
be a function satisfy the following three conditions:

(H1) g : Ω × (0,∞) → R is a nonnegative Carathéodory function such that, for each
x ∈ Ω, g(x, ·) is nonincreasing on (0,∞).

(H2) There exists a Lebesgue measurable subset E of Ω such that |E| > 0 and
g(x, s) > 0 for any s > 0 and almost all x ∈ E.

(H3) ρ∂Ωg(·, cρ∂Ω) ∈ L2(Ω) for any c ∈ (0,∞).

Then for any nonnegative σ ∈ H
1
2 (∂Ω) problem (1.1) has a unique weak solution

u ∈ H1(Ω) and there exists a positive constant c such that u ≥ cρ∂Ω a.e in Ω.
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Let us introduce the space

H1
0,Γ1(Ω) :=

{
v ∈ H1(Ω) : v = 0 on Γ1

}
,

which endowed with the inner product of H1(Ω) is a Hilbert space. Let (H1
0,Γ1

(Ω))′

denote its topological dual. If f is a function defined on Ω, we will write f ∈
(H1

0,Γ1
(Ω))′ to mean that fφ ∈ L1(Ω) and

∣∣∣
∫

Γ2
ηφ

∣∣∣ ≤ c ∥φ∥H1(Ω) for any φ ∈ H1
0,Γ1

(Ω),
with c a positive constant independent of φ. Similarly, if η is a function defined on Γ2 we
will say that η ∈ (H1

0,Γ1
(Ω))′ to mean that ηφ ∈ L1(Γ2) and that

∣∣∣
∫

Γ2
ηφ

∣∣∣ ≤ c ∥φ∥H1(Ω)

for any φ ∈ H1
0,Γ1

(Ω), with a positive constant c independent of φ. In both cases, the
maps φ →

∫
Ω fφ and φ →

∫
Γ2
ηφ will still be denoted by f and η, respectively.

Weak solutions of problems with mixed nonhomogeneous Dirichlet–Neumann
boundary conditions are defined as follows:
Definition 1.4. Let f : Ω → R be such that fφ ∈ L1(Ω) for any φ ∈ H1

0,Γ1
(Ω), let

τ ∈ H
1
2 (Γ1), and let η : Γ2 → R be a measurable function such that ηφ ∈ L1(Γ2) for

any φ ∈ H1
0,Γ1

(Ω). We say that u : Ω → R is a weak solution of the problem




−∆u = f in Ω,
u = τ on Γ1,
∂u
∂ν = η on Γ2.

(1.9)

if u ∈ H1(Ω), u = τ on Γ1, and
∫

Ω

⟨∇u,∇φ⟩ =
∫

Ω

fφ+
∫

Γ2

ηφ for any φ ∈ H1
0,Γ1(Ω). (1.10)

Let f : Ω → R be such that fφ ∈ L1(Ω) for any φ ∈ H1
0,Γ1

(Ω), let τ : Γ1 → R, and
suppose that u is a weak solution of the problem





−∆u = f in Ω,
u = τ on Γ1,

u = 0 on Γ2.

(1.11)

If φ ∈ H1
0,Γ1

(Ω) and if φ and u are regular enough on Ω, we have

− div(φ∇u) + ⟨∇u,∇φ⟩ = fφ

and then, from the divergence theorem and the fact that φ = 0 on Γ1, we get

−
∫

Γ2

∂u

∂ν
φ+

∫

Ω

⟨∇u,∇φ⟩ =
∫

Ω

fφ.

Therefore, ∫

Γ2

∂u

∂ν
φ =

∫

Ω

⟨∇u,∇φ⟩ −
∫

Ω

fφ.

This suggests the following definition.
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Definition 1.5. Let f : Ω → R be such that f ∈ (H1
0,Γ1

(Ω))′, and let τ ∈ H
1
2 (Γ1).

If u ∈ H1(Ω) is the weak solution of problem (1.11), we define the (distributional)
normal derivative of u on Γ2, as the linear functional ∂u

∂ν Γ2
: H1

0,Γ1
(Ω) → R defined by

∂u

∂ν Γ2
(φ) :=

∫

Ω

⟨∇u,∇φ⟩ −
∫

Ω

fφ for any φ ∈ H1
0,Γ1(Ω). (1.12)

For η and η̃ in (H1
0,Γ1

(Ω))′ we will write η ≥ η̃ (respectively η ≤ η̃) to mean that
η(φ) ≥ η̃(φ) (resp. η(φ) ≤ η̃(φ)) for any nonnegative φ ∈ H1

0,Γ1
(Ω). We will write also

η > η̃ (respectively η < η̃) to mean that η ̸= η̃ and η ≥ η̃ (resp. and η ≤ η̃).
Concerning problem (1.2) we have the following:

Theorem 1.6. Let Ω be a C2 and bounded domain in Rn such that ∂Ω = Γ1 ∪ Γ2,
where Γ1 and Γ2 are disjoint closed sets in ∂Ω. Let g : Ω × (0,∞) → [0,∞). Assume
the conditions (H1)–(H2) of Theorem 1.3 and the following:

(H3’) ρΓ1g(·, cρ∂Ω) ∈ L2(Ω) for any c ∈ (0,∞).

Let τ be a nonnegative function in H
1
2 (Γ1), let uτ be the weak solution of the problem





−∆uτ = g(·, uτ ) in Ω,
uτ = τ on Γ1,

uτ = 0 on Γ2.

(1.13)

given by Theorem 1.3, and let η : Γ2 → R be such that η ∈ (H1
0,Γ1

(Ω))′. Then:

(i) if η ≥ ∂uτ

∂ν Γ2
, then (1.2) has a unique weak solution u ∈ H1(Ω), and there exists

a positive constant c such that u ≥ cρ∂Ω in Ω,
(ii) if η < ∂uτ

∂ν Γ2
, then (1.2) has no weak solutions.

As a consequence of Theorem 1.6 and of a weak form of the Hopf boundary lemma
given in Lemma 4.4, we will get the following:

Corollary 1.7. Let g : Ω × (0,∞) → [0,∞) satisfy the conditions (H1)–(H2) of
Theorem 1.3 and the condition (H3’) of Theorem 1.6, let τ be a nonnegative function
in H

1
2 (Γ1) and let η : Γ2 → R be such that η ∈ (H1

0,Γ1
(Ω))′. If η ≥ 0, then problem

(1.2) has a unique weak solution u ∈ H1(Ω), and there exists a positive constant c
such that u ≥ cρ∂Ω in Ω.

The paper is organized as follows. In Section 2 we recall some general facts we
need, and in Section 3 we study problem (1.1) via an approximation approach, which
is adapted from [27], where the existence and uniqueness of strong solutions of (1.1)
were investigated. We consider, for ε ∈ (0, 1] and for any nonnegative σ ∈ H

1
2 (∂Ω),

the problem of finding vε ∈ H1
0 (Ω) such that −∆vε = gε(·, vε + σ̃) in Ω, vε = 0

on ∂Ω, where σ̃ is the solution of the problem −∆σ̃ = 0 in Ω, σ̃ = σ on ∂Ω, and
with gε : Ω × (0,∞) → R defined by gε(x, s) := min

{
ε−1, g(x, s+ ε)

}
. By writing

the above problem for vε as a fixed point problem and using the Schauder fixed
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point theorem we prove in Lemma 3.2 the existence and uniqueness of such a vε,
and that, in addition, the map ε → vε is nonincreasing. Lemma 3.3 shows that if
v(x) := limε→0+ vε(x), then v ∈ H1

0 (Ω),

lim
ε→0+

∥vε − v∥H1
0 (Ω) = 0 and lim

ε→0+
∥gε(·, vε + σ̃) − g(·, v + σ̃)∥L2(Ω,ρ2

∂Ω(x)dx) = 0.

From these facts and from other additional considerations, Theorem 1.3 is proved at
the end of Section 3, by showing that u := v + σ̃ is the unique solution of problem
(1.1) and that it satisfies u ≥ cρ∂Ω for some constant c > 0.

In Section 4 we prove Theorem 1.6. The existence assertion of 1.6 is obtained
by adapting, to our setting, ideas from the proof of Theorem 1.1 in [35] (which is
a sub-supersolution theorem for problems of the form −∆u = f(x, u) in Ω, u = 0
on ∂Ω. Lemma 4.4 gives a weak form of the Hopf boundary lemma, and Corollary 1.7
is proved as a direct consequence of Theorem 1.6 and of Lemma 4.4.

2. PRELIMINARIES

Let us recall some well known facts.

Remark 2.1.

(i) (Poincaré’s inequality for functions in H1
0 (Ω), see, e.g., [38, Theorem 1.8.1])

There exists a positive constant c such that

∥u∥2 ≤ c ∥∇u∥2 for any u ∈ H1
0 (Ω).

(ii) (Poincaré’s inequality for functions in H1
0,Γ1

(Ω), see, e.g., [43, Theorem 7.16])
There exists a positive constant c such that

∥u∥2 ≤ c ∥∇u∥2 for any u ∈ H1
0,Γ1(Ω).

(iii) The inclusion H1
0,Γ1

(Ω) ↪→ L2(Ω) is compact. Indeed, the inclusion
H1

0,Γ1
(Ω) ↪→ H1(Ω) is continuous and (see, e.g., [38, Theorem 1.9.15]) H1(Ω) has

compact inclusion into L2(Ω).
(iv) (Hardy’s inequality, see, e.g., [6, p. 313], see also [38, Theorem 1.10.15])

There exists a positive constant c such that
∥∥∥ u

ρ∂Ω

∥∥∥
2

≤ c ∥∇u∥2 for any u ∈ H1
0 (Ω).

H1
0,Γ1

(Ω) is a closed subspace of H1(Ω) and thus, provided with the norm of
H1(Ω), it is a Hilbert space, and the Poincaré inequality of Remark 2.1(ii) gives that
u → ∥∇u∥2 is a norm on H1

0,Γ1
(Ω), equivalent to the norm ∥.∥H1(Ω). From now on, we

will consider H1
0,Γ1

(Ω) as a Hilbert space provided with the norm ∥u∥H1
0,Γ1

(Ω) := ∥∇u∥2.
Similarly, H1

0 (Ω) will be considered as a Hilbert space with the same norm.
For δ > 0, let

Ωδ := {x ∈ Ω : ρ∂Ω(x) > δ} and Aδ := {x ∈ Ω : ρ∂Ω(x) ≤ δ} .



26 Tomas Godoy

Similarly, for i = 1, 2, we set

ΩΓi,δ := {x ∈ Ω : ρΓi
(x) > δ} and AΓi,δ := {x ∈ Ω : ρΓi

(x) ≤ δ} . (2.1)

The following lemma provides an analogous of the Hardy inequality for functions
in H1

0,Γ1
(Ω).

Lemma 2.2 (Hardy’s inequality for functions in H1
0,Γ1

(Ω)). There exists a positive
constant c such that ∥∥∥∥

u

ρΓ1

∥∥∥∥
2

≤ c ∥∇u∥2

for any u ∈ H1
0,Γ1

(Ω).

Proof. Along the proof, c, c′, c′′ etc., will denote positive constants independent of u.
Let δ1, δ2 be such that such that 0 < δ1 < δ2 and ΩΓ1,δ2 ̸= ∅. Let ψ ∈ C∞(Ω) be such
that 0 ≤ ψ ≤ 1 in Ω, ψ = 1 in AΓ1,δ1 and ψ = 0 in ΩΓ1,δ2 . Then, for u ∈ H1

0,Γ1
(Ω),

∥∥∥∥
u

ρΓ1

∥∥∥∥
2

2
=

∫

Ω

u2

ρ2
Γ1

=
∫

AΓ1,δ1

u2

ρ2
Γ1

+
∫

Ω\AΓ1,δ1

u2

ρ2
Γ1

. (2.2)

Now, uψ ∈ H1
0 (Ω) and so, taking into account the Hardy inequality in H1

0 (Ω),
∫

AΓ1,δ1

u2

ρ2
Γ1

=
∫

AΓ1,δ1

u2ψ2

ρ2
Γ1

≤
∫

Ω

u2ψ2

ρ2
∂Ω

≤ c

∫

Ω

|∇(uψ)|2 = c

∫

Ω

|ψ∇u+ u∇ψ|2 .

Thus
∥∥∥∥
u

ρΓ1

∥∥∥∥
L2(AΓ1,δ1 )

≤ c ∥ψ∇u+ u∇ψ∥L2(Ω)

≤ c ∥ψ∥L∞(Ω) ∥∇u∥L2(Ω) + c ∥∇ψ∥L∞(Ω) ∥u∥L2(Ω) .

(2.3)

and, by the Poincaré inequality of Remark 2.1(ii), ∥u∥L2(Ω) ≤ c′ ∥∇u∥L2(Ω). Thus,
∥∥∥∥
u

ρΓ1

∥∥∥∥
L2(AΓ1,δ1 )

≤ c′′(∥ψ∥L∞(Ω) + ∥∇ψ∥L∞(Ω)) ∥∇u∥L2(Ω) .

On the other hand,
∫

Ω\AΓ1,δ1

u2

ρ2
Γ1

≤ 1
δ2

1

∫

Ω\AΓ1,δ1

u2 ≤ 1
δ2

1

∫

Ω

u2 ≤ c′′′ ∥∇u∥2
L2(Ω) , (2.4)

the last inequality by the Poincaré inequality of Remark 2.1(ii), and the lemma follows
from (2.2), (2.3), and (2.4).
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Corollary 2.3.

(i) If f : Ω → R and f ∈ L2(Ω, ρ2
∂Ω(x)dx), then f ∈ (H1

0 (Ω))′ and

∥f∥(H1
0 (Ω))′ ≤ c ∥f∥L2(Ω,ρ2

∂Ω(x)dx)

with c a positive constant independent of f .
(ii) If f : Ω → R and f ∈ L2(Ω, ρ2

Γ1
(x)dx), then f ∈ (H1

0,Γ1
(Ω))′ and it holds that

∥f∥(H1
0,Γ1

(Ω))′ ≤ c ∥f∥L2(Ω,ρ2
Γ1

(x)dx) ,

where c is a positive constant independent of f .

Proof. Suppose that ρ∂Ωf ∈ L2(Ω) and let φ ∈ H1
0 (Ω). Then, for some positive

constant c independent of φ,
∫

Ω

|fφ| =
∫

Ω

∣∣∣∣ρ∂Ωf
φ

ρ∂Ω

∣∣∣∣ ≤ ∥ρ∂Ωf∥2

∥∥∥∥
φ

ρ∂Ω

∥∥∥∥
2

≤ c ∥ρ∂Ωf∥2 ∥φ∥H1
0 (Ω) ,

the last inequality by Remark 2.1(iii). Thus (i) holds. The proof of (ii) is similar, using
Lemma 2.2 instead of Remark 2.1(iii).

Remark 2.4 (see, e.g., [43, Theorem 8.9]). If 0 ≤ f ∈ (H1
0 (Ω))′, 0 ≤ σ ∈ H

1
2 (∂Ω),

and if u is the weak solution of problem (1.7), then u ≥ 0 in Ω.

Remark 2.5.
(i) (see [7, Lemma 3.2]) Suppose 0 ≤ f ∈ L∞(Ω), and let ζ be the solution of the

problem {
−∆ζ = f in Ω,
ζ = 0 on ∂Ω.

(2.5)

Then ζ ≥ cρ∂Ω
∫

Ω fρ∂Ω in Ω, with c a positive constant independent of f .
(ii) If 0 ≤ f ∈ L∞(Ω), 0 ≤ σ ∈ H

1
2 (∂Ω) and if u ∈ H1(Ω) is a weak solution of the

problem {
−∆u = f in Ω,
u = σ on ∂Ω,

(2.6)

then u ≥ cρ∂Ω
∫

Ω fρ∂Ω in Ω with c a positive constant independent of f . Indeed, let ζ
be as in (i), then u− ζ satisfies, in a weak sense,

{
−∆(u− ζ) = f in Ω,
u− ζ = σ on ∂Ω,

and then, by Remark 2.4, u ≥ ζ. Thus, by (i), u ≥ cρ∂Ω
∫

Ω fρ∂Ω in Ω, with c as in (i).
(iii) Let f : Ω → R be a nonnegative and measurable function such that

f ∈ (H1
0 (Ω))′ and |{x ∈ Ω : f(x) > 0}| > 0. If 0 ≤ σ ∈ H

1
2 (∂Ω) and if u ∈ H1(Ω)

is a weak solution of the problem (2.6), then there exists a positive constant c such
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that u ≥ cρ∂Ω in Ω. In fact, in such a case there exist a measurable subset F ⊂ Ω
with |F | > 0 and λ ∈ (0,∞) such that f ≥ λχF in Ω. Let w be the solution of
−∆w = λχF in Ω, w = 0 on ∂Ω. Then, by (i), there exists a positive constant c such
that w ≥ cρ∂Ω in Ω. Also, −∆(u− w) = f − λχF ≥ 0 in Ω and u− w = σ ≥ 0 on ∂Ω.
Thus, by Remark 2.4, u− w ≥ 0, and then u ≥ cρ∂Ω in Ω.

Remark 2.6. Suppose 0 ≤ f ∈ (H1
0,Γ1

(Ω))′, 0 ≤ τ ∈ H
1
2 (Γ1) and let η : Γ2 → R be

such that 0 ≤ η ∈ (H1
0,Γ1

(Ω))′. If u is the weak solution of problem (1.9), then u ≥ 0
in Ω. Indeed, since τ ≥ 0 we have u− = 0 on Γ1 and thus u− ∈ H1

0,Γ1
(Ω). Taking

φ = −u− in (1.10) we get

−
∫

Ω

〈
∇u,∇u−〉

+
∫

Ω

fu− +
∫

Γ2

ηu− = 0,

and so ∫

Ω

∣∣∇u−∣∣2 = −
∫

Ω

fu− −
∫

Γ2

ηu− ≤ 0.

Thus
∫

Ω |∇u−|2 = 0. Therefore, by the Poincaré inequality of Remark 2.1(ii), u− = 0
in Ω. Then u ≥ 0 in Ω. Moreover, from Remark 2.5 (iii) used with σ := u|∂Ω ≥ 0
on ∂Ω (the restriction in the sense of the trace), it follows that, if in addition,
|{x ∈ Ω : f(x) > 0}| > 0, then there exists a positive constant c such that u ≥ cρ∂Ω
in Ω.

3. THE CASE OF DIRICHLET BOUNDARY CONDITION

We assume, for the whole section, that g : Ω × (0,∞) → R satisfies the conditions
(H1)–(H3) of Theorem 1.3. We first study, for ε ∈ (0, 1] and for a nonnegative
σ ∈ H

1
2 (∂Ω), the approximated problem

{
−∆u = gε(·, u) in Ω,
u = σ on ∂Ω,

(3.1)

where gε : Ω × (0,∞) → R is defined by

gε(x, s) := min
{
ε−1, g(x, s+ ε)

}
. (3.2)

Observe that, since g satisfies (H1)–(H3), the same conditions hold for each gε.
Let σ̃ ∈ H1(Ω) be the weak solution of the problem

{
−∆σ̃ = 0 in Ω,
σ̃ = σ on ∂Ω.

(3.3)
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Then, by Remark 2.4(i), σ̃ ≥ 0 in Ω. By writing u = σ̃ + v, problem (3.1) becomes
equivalent to the problem of finding a weak solution v ∈ H1

0 (Ω) of the problem
{

−∆v = gε(·, v + σ̃) in Ω,
v = 0 on ∂Ω.

(3.4)

Let (−∆)−1 : L2(Ω) → H1
0 (Ω) be the solution operator of the homoge-

neous Dirichlet problem defined by (−∆)−1h = u, where u ∈ H1
0 (Ω) is the

weak solution of the problem −∆u = h in Ω, u = 0 on ∂Ω. We recall that
(−∆)−1 : L2(Ω) → H1

0 (Ω) is continuous and that, since H1
0 (Ω) has compact inclusion

into L2(Ω), (−∆)−1 : L2(Ω) → L2(Ω) is a compact operator. Let Tε : L2(Ω) → H1
0 (Ω)

be defined by
Tε(v) := (−∆)−1(gε(·, v + σ̃)),

and let Cε :=
{
v ∈ L2(Ω) : 0 ≤ v ≤ 1

ε (−∆)−1(1)
}

. We have the following:

Lemma 3.1.
(i) Cε is a bounded, closed and convex subset of L2(Ω).
(ii) Tε(Cε) ⊂ Cε.
(iii) Tε : Cε → Cε is continuous.
(iv) Tε : Cε → Cε is a compact operator.

Proof. (i) is obvious.
To show (ii) observe that if v ∈ Cε then 0 ≤ gε(·, v + σ̃) ≤ 1

ε a.e. in Ω and so, by
Remark 2.4,

0 ≤ (−∆)−1(gε(x, v + σ̃)) ≤ 1
ε

(−∆)−1(1).

Thus Tε(v) ∈ Cε.
To prove (iii) it is enough to see that if v ∈ Cε, and if {vj}j∈N is a sequence in

Cε that converges to v in L2(Ω), then there exists a subsequence {vjk
}k∈N such that

{Tε(vjk
)}k∈N converges to Tε(v) in L2(Ω). Let v ∈ Cε, and let {vj}j∈N be a sequence

in Cε which converges to v in L2(Ω), then there exists a subsequence {vjk
}k∈N such

that {vjk
}k∈N converges to v a.e. in Ω. Thus, since gε is a Carathéodory function,

{gε(·, vjk
+ σ̃)}k∈N converges to gε(·, v + σ̃) a.e. in Ω. Then

lim
k→∞

|gε(·, vjk
+ σ̃) − gε(·, v + σ̃)|2 = 0

a.e. in Ω. Since |gε(·, vjk
+ σ̃) − gε(·, v + σ̃)|2 ≤ 1

ε2 , the Lebesgue dominated con-
vergence theorem gives that {gε(·, vjk

+ σ̃)}k∈N converges to gε(·, v + σ̃) in L2(Ω).
Then

{
(−∆)−1(gε(·, vjk

+ σ̃))
}

k∈N converges to (−∆)−1(gε(·, v + σ̃)) in L2(Ω), i.e.,
{Tε(vjk

)}k∈N converges to Tε(v) in L2(Ω). Thus (iii) holds.
To see (iv), note that {gε(·, vj + σ̃)}j∈N is bounded in L2(Ω) for any sequence

{vj}j∈N in Cε, and so (iv) follows immediately from the compactness of the solution
operator (−∆)−1 : L2(Ω) → L2(Ω).
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Lemma 3.2.

(i) For ε ∈ (0, 1], the problem
{

−∆vε = gε(·, vε + σ̃) in Ω,
vε = 0 on ∂Ω

(3.5)

has a unique weak solution vε ∈ H1
0 (Ω).

(ii) The map ε → vε is nonincreasing.
(iii) There exists a positive constant c such that vε ≥ cρ∂Ω for any ε ∈ (0, 1].
(iv) {vε}ε∈(0,1] is bounded in H1

0 (Ω).

Proof. From Lemma 3.1 and the Schauder fixed point theorem, Tε has a fixed point
vε ∈ Cε, and so vε is a weak solution of problem (3.4). Suppose that w ∈ H1(Ω) is
another solution of (3.4). Then vε − w ∈ H1

0 (Ω) and it satisfies, in weak sense
{

−∆(vε − w) = gε(·, vε + σ̃) − gε(., w + σ̃) in Ω,
vε − w = 0 on ∂Ω.

(3.6)

Now, gε(x, ·) is nonincreasing on (0,∞) for a.e. x ∈ Ω, and so

gε(·, vε + σ̃) − gε(·, w + σ̃)(vε − w) ≤ 0 a.e in Ω.

Thus, taking vε − w as a test function in (3.6), we get that ∥|∇(vε − w)|∥2 = 0, and
so, by the Poincaré inequality, vε = w in Ω. Thus (i) holds.

To prove (ii), suppose that 0 < ε < θ ≤ 1. Then gε ≥ gθ on Ω × (0,∞). Thus,
in a weak sense,

{
−∆(vε) = gε(·, vε + σ̃) ≥ gθ(·, vε + σ̃) in Ω,
vε = 0 on ∂Ω.

(3.7)

Also, {
−∆(vθ) = gθ(·, vθ + σ̃) in Ω,
vθ = 0 on ∂Ω.

(3.8)

and so, again in a weak sense,




−∆(vε − vθ) = gε(·, vε + σ̃) − gθ(·, vθ + σ̃)
≥ gθ(·, vε + σ̃) − gθ(·, vθ + σ̃) in Ω,
vε − vθ = 0 on ∂Ω.

(3.9)

and so, taking −(vε − vθ)− as a test function in (3.9) we get
∫

Ω

∣∣∇((vε − vθ)−)
∣∣2 ≤ −

∫

{vε−vθ<0}

(gθ(·, vε + σ̃) − gθ(·, vθ + σ̃))(vε − vθ)− ≤ 0.
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The last inequality because gε(x, ·) is nonincreasing on (0,∞) for a.e. x ∈ Ω. Thus∫
Ω |∇((vε − vθ)−)|2 = 0, and so, by Remark 2.1(i), (vε − vθ)− = 0 in Ω, and then
vε ≥ vθ a.e. in Ω. Thus (ii) holds.

To see (iii), observe that for ε ∈ (0, 1], by (ii), vε ≥ v1. Since −∆v1 = g1(·, v1)
in Ω and 0 ≤ g1(·, v1) ∈ L∞(Ω), and taking into account that, by (H2), g1(·, v1) is
not identically zero, Remark 2.5(i) gives that v1 ≥ cρ∂Ω for some positive constant c.
Thus vε ≥ cρ∂Ω and (iii) holds.

It remains to show (iv). Let c be as in (iii). We take vε as a test function in (3.4)
to obtain

∥∇vε∥2
2 =

∫

Ω

|∇vε|2 =
∫

Ω

vεgε(·, vε + σ̃)

≤
∫

Ω

vεg(·, vε + σ̃) ≤
∫

Ω

vεg(·, σ̃ + cρ∂Ω)

=
∫

Ω

vε

ρ∂Ω
ρ∂Ωg(·, σ̃ + cρ∂Ω) ≤

∫

Ω

vε

ρ∂Ω
ρ∂Ωg(·, cρ∂Ω)

(3.10)

where we have used (iii), (H1), and that gε ≤ g, as well as that g(x, s) is nonincreasing
in s. Now, by the Hölder inequality and Remark 2.1(iv), we have, for some positive
constant c′ independent of ε,

∫

Ω

vε

ρ∂Ω
ρ∂Ωg(·, cρ∂Ω) ≤

∥∥∥∥
vε

ρ∂Ω

∥∥∥∥
2

∥ρ∂Ωg(·, cρ∂Ω)∥2 ≤ c′ ∥|∇vε|∥2 ∥ρ∂Ωg(·, cρ∂Ω)∥2

(3.11)
and, by (H3), ∥ρ∂Ωg(·, cρ∂Ω)∥2 < ∞. Thus, from (3.10) and (3.11), we get

∥|∇vε|∥2 ≤ c′ ∥ρ∂Ωg(·, cρ∂Ω)∥2 ,

which ends the proof of the lemma.

Lemma 3.3. For ε ∈ (0, 1], let vε ∈ H1
0 (Ω) be as given by Lemma 3.2, and let

v := limε→0+ vε. Then:

(i) v ∈ H1
0 (Ω) and limε→0+ vε = v with convergence in H1

0 (Ω),
(ii) limε→0+ gε(·, vε + σ̃) = g(·, v + σ̃) with convergence in L2(Ω, ρ2

∂Ω(x)dx).

Proof. Observe that v ∈ H1
0 (Ω). Indeed, let {θj}j∈N ⊂ (0, 1] be a sequence such that

limj→∞ θj = 0, By Lemma 3.2,
{
vθj

}
j∈N is bounded in H1

0 (Ω). Thus there exist
a subsequence {vθjk

}k∈N and a function w ∈ H1
0 (Ω) such that {vθjk

}k∈N converges to
w strongly in L2(Ω), and {∇vθjk

}k∈N converges to ∇w weakly in L2(Ω,Rn). After pass
to a further subsequence if necessary, we can assume also that {vθjk

}k∈N converges to
w a.e. in Ω. Since v := limε→0+ vε it follows that w = v and then v ∈ H1

0 (Ω).
To prove the lemma it is enough to see that for any sequence {εj}j∈N ⊂ (0, 1] such

that limj→∞ εj = 0 there exists a subsequence, which we still denoted by {εj}j∈N,
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such that
lim

j→∞

∥∥vεj − v
∥∥2

H1
0 (Ω) = 0

and
lim

j→∞

∥∥gεj
(·, vεj

+ σ̃) − g(·, v + σ̃)
∥∥

L2(Ω,ρ2
∂Ω(x)dx) = 0.

Now, in a weak sense,
{

−∆(vεj
− v) = gεj

(·, vεj
+ σ̃) − g(·, v + σ̃) in Ω,

vεj
− v = 0 on ∂Ω.

(3.12)

We take vεj
− v as a test function in (3.12) and we use the Hardy inequality of

Remark 2.1(iv) to obtain

∥∥vεj
− v

∥∥2
H1

0 (Ω) =
∫

Ω

∣∣∇(vεj
− v)

∣∣2 =
∫

Ω

(gεj
(·, vεj

+ σ̃) − g(·, v + σ̃))(vεj
− v)

=
∫

Ω

ρ∂Ω(gεj (·, vεj + σ̃) − g(·, v + σ̃))
vεj

− v

ρ∂Ω

≤ c
∥∥ρ∂Ω(gεj

(·, vεj
+ σ̃) − g(·, v + σ̃))

∥∥
2

∥∥vεj
− v

∥∥
H1

0 (Ω) .

where c is a positive constant independent of j. Then, in order to prove the lemma,
it suffices to show that

lim
j→∞

∥∥ρ∂Ω(gεj (·, vεj + σ̃) − g(·, v + σ̃))
∥∥

2 = 0. (3.13)

Now,
∥∥ρ∂Ω(gεj (·, vεj + σ̃) − g(·, v + σ̃))

∥∥2
2

=
∫

{
g(·,vεj

+σ̃+εj)≤ 1
εj

}
ρ2

∂Ω(gεj
(·, vεj

+ σ̃) − g(·, v + σ̃))2

+
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}
ρ2

∂Ω(gεj
(·, vεj

+ σ̃) − g(·, v + σ̃))2

=
∫

{
g(·,vεj

+σ̃+εj)≤ 1
εj

}
ρ2

∂Ω(g(·, vεj
+ σ̃ + εj) − g(·, v + σ̃))2

+
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}
ρ2

∂Ω

(1
ε

− g(·, v + σ̃)
)2
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and so
∥∥ρ∂Ω(gεj

(·, vεj
+ σ̃) − g(·, v + σ̃))

∥∥2
2

=
∫

Ω

ρ2
∂Ω(g(·, vεj + σ̃ + εj) − g(·, v + σ̃))2

−
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}
ρ2

∂Ω(g(·, vεj
+ σ̃ + εj) − g(·, v + σ̃))2

+
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}
ρ2

∂Ω

(1
ε

− g(·, v + σ̃)
)2

= I1,j + I2,j + I3,j ,

where

I1,j :=
∫

Ω

ρ2
∂Ω(g(·, vεj

+ σ̃ + εj) − g(·, v + σ̃))2,

I2,j := −
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}
ρ2

∂Ω(g(·, vεj
+ σ̃ + εj) − g(·, v + σ̃))2,

I3,j :=
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}
ρ2

∂Ω

(1
ε

− g(·, v + σ̃)
)2
.

Now, since g is Carathéodory,

lim
j→∞

ρ2
∂Ω(g(·, vεj

+ σ̃ + εj) − g(·, v + σ̃))2 = 0

a.e. in Ω. Also,

ρ2
∂Ω(g(., vεj + σ̃ + εj) − g(·, v + σ̃))2

≤ 2ρ2
∂Ωg

2(·, vεj
+ σ̃ + εj) + 2ρ2

∂Ωg
2(·, v + σ̃) ≤ 4ρ2

∂Ωg
2(·, v + σ̃),

and since v ≥ cρ∂Ω and σ̃ ≥ 0, (H3) gives ρ2
∂Ωg

2(·, v + σ̃) ∈ L1(Ω). Then, by the
Lebesgue dominated convergence theorem,

lim
j→∞

I1,j = 0.

Let
Uj :=

{
g(·, v1 + σ̃) > 1

εj

}
.
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Then Uj+1 ⊂ Uj for any j, U1 ⊂ Ω, and
⋂∞

j=1 Uj = {g(·, v1 + σ̃) = ∞}. Since
ρ2

∂Ωg
2(·, v+ σ̃) ∈ L1(Ω) it follows that

∣∣∣
⋂∞

j=1 Uj

∣∣∣ = 0. Then limj→∞ |Uj | = 0, and thus

lim
j→∞

∫

Uj

ρ2
∂Ωg

2(·, v + σ̃) = 0. (3.14)

Now,
ρ2

∂Ω(g(·, vεj
+ σ̃ + εj) − g(·, v + σ̃))2 ≤ 2ρ2

∂Ωg
2(·, v + σ̃,)

and so

|I2,j | ≤
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}
ρ2

∂Ω(g(·, vεj + σ̃ + εj) − g(·, v + σ̃))2

≤
∫

Uj

2ρ2
∂Ωg

2(·, v + σ̃).

Then, by (3.14),
lim

j→∞
I2,j = 0.

Finally,
ρ2

∂Ω

(1
ε

− g(·, v + σ̃)
)2

≤ 2ρ2
∂Ω

1
ε2 + 2ρ2

∂Ωg
2(·, v + σ̃),

and then

|I3,j | ≤
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}

(
2ρ2

∂Ω
1
ε2 + 2ρ2

∂Ωg
2(·, v + σ̃)

)

≤ 2
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}
ρ2

∂Ωg
2(·, vεj

+ σ̃ + εj)

+ 2
∫

{
g(·,vεj

+σ̃+εj)> 1
εj

}
ρ2

∂Ωg
2(·, v + σ̃)

≤ 4
∫

Uj

ρ2
∂Ωg

2(·, v + σ̃),

and thus, by (3.14),
lim

j→∞
I3,j = 0,

which concludes the proof of the lemma.
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Proof of Theorem 1.3. For ε ∈ (0, 1], let vε ∈ H1
0 (Ω) be as given by Lemma 3.2 and

let v = limε→0+ vε. Let uε := σ̃ + vε and let u := limε→0+ uε = σ̃ + v. By Lemma 3.2,
vε is a weak solution of the problem

{
−∆vε = gε(·, vε + σ̃) in Ω,
vε = 0 on ∂Ω,

and thus
∫

Ω ⟨∇vε,∇φ⟩ =
∫

Ω gε(·, vε + σ̃)φ for any φ ∈ H1
0 (Ω), and so (since∫

Ω ⟨∇σ̃,∇φ⟩ = 0 for any ε ∈ (0, 1] and φ ∈ H1
0 (Ω))

∫

Ω

⟨∇uε,∇φ⟩ =
∫

Ω

gε(·, uε)φ for any φ ∈ H1
0 (Ω). (3.15)

Let φ ∈ H1
0 (Ω). From Lemma 3.3 it follows that u ∈ H1(Ω)) and that limε→0+ uε = u

with convergence in H1
0 (Ω). Then limε→0+

∫
Ω ⟨∇uε,∇φ⟩ =

∫
Ω ⟨∇u,∇φ⟩. Again by

Lemma 3.3, limε→0+ gε(·, uε) = g(·, u) with convergence in L2(Ω, ρ2
∂Ω(x)dx) and thus

limε→0+
∫

Ω gε(·, uε)φ =
∫

Ω g(·, u)φ. Then, from (3.15),
∫

Ω

⟨∇u,∇φ⟩ =
∫

Ω

g(·, u)φ.

Thus u is a weak solution of problem (1.1). Also, Lemma 3.2 gives that vε ≥ cρ∂Ω for
some positive constant c independent of ε, and then u ≥ cρ∂Ω in Ω.

If w is another weak solution of (1.1), then u− w ∈ H1
0 (Ω) and

∫

Ω

⟨∇(u− w),∇φ⟩ =
∫

Ω

(g(·, u) − g(·, w))φ

for any φ ∈ H1
0 (Ω). We take φ = u−w and, since g(x, s) is nonincreasing in s, we get

∫

NΩ

|∇(u− w)|2 =
∫

Ω

(g(·, u) − g(·, w))(u− w) ≤ 0.

Thus
∫

Ω |∇(u− w)|2 = 0 which, by the Poincaré inequality, gives u = w.

4. THE CASE OF MIXED DIRICHLET–NEUMAN BOUNDARY CONDITIONS

Our aim in this section is to prove Theorems 1.6 and 1.7. We assume, from now on,
that g : Ω × (0,∞) → R satisfies the conditions (H1) and (H2) of Theorem 1.3 as well
as the condition (H3’) of Theorem 1.6. Since the condition (H3’) implies the condition
(H3) of Theorem 1.3 (because ρ∂Ω ≤ ρΓ1), all the results of the previous section for
the Dirichlet problems still hold under our new assumptions.
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Remark 4.1.
(i) If f ∈ L2(Ω, ρ2

Γ1
(x)dx), τ ∈ H

1
2 (Γ1) and η ∈ (H1

0,Γ1
(Ω))′ (notice that we are

not assuming that η is a function defined in Γ2, then the problem of finding u ∈ H1(Ω)
such that {∫

Ω ⟨∇u,∇φ⟩ =
∫

Ω fφ+ η(φ) for any φ ∈ H1
0,Γ1

(Ω),
u = τ on Γ1

(4.1)

has a unique solution, and it satisfies

∥u∥H1(Ω) ≤ c(∥f∥(H1
0 (Ω))′ + ∥τ∥

H
1
2 (Γ1)

+ ∥η∥(H1
0,Γ1

(Ω))′). (4.2)

for some positive constant c independent of f , τ and η. Indeed, let σ ∈ H
1
2 (∂Ω) be

defined by σ = τ on Γ1 and σ = 0 on Γ2, and let ξ ∈ H1(Ω) be such that ξ = σ on ∂Ω.
By writing u = z + ξ, the problem of finding u becomes equivalent to the problem of
finding z ∈ H1

0,Γ1
(Ω) such that

∫

Ω

⟨∇z,∇φ⟩ =
∫

Ω

fφ−
∫

Ω

⟨∇ξ,∇φ⟩ + η(φ) for any φ ∈ H1
0,Γ1(Ω), (4.3)

i.e., such that
B(z, φ) = L(φ) for any φ ∈ H1

0,Γ1(Ω),
where, for w ∈ H1

0,Γ1
(Ω) and φ ∈ H1

0,Γ1
(Ω),

B(w,φ) :=
∫

Ω

⟨∇w,∇φ⟩ and L(φ) :=
∫

Ω

fφ−
∫

Ω

⟨∇ξ,∇φ⟩ + η(φ).

Since B is a continuous and coercive bilinear form on H1
0,Γ1

(Ω) × H1
0,Γ1

(Ω) and
L ∈ (H1

0,Γ1
(Ω))′, the Lax Milgram theorem gives the existence and uniqueness of the

solution z ∈ H1
0,Γ1

(Ω) of (4.3), and that it satisfies ∥z∥H1
0,Γ1

(Ω) ≤ c′ ∥L∥(H1
0,Γ1

(Ω))′ for
some positive constant c′ independent of f , τ , and η. Then problem (4.1) has a unique
solution u ∈ H1(Ω) given by u := z + ξ. And, since

∥L∥(H1
0,Γ1

(Ω))′ ≤ ∥f∥(H1
0 (Ω))′ + ∥ξ∥H1(Ω) + ∥η∥(H1

0,Γ1
(Ω))′

and (see [43, Section 7.9.3, formula (7.48)])

∥τ∥
H

1
2 (Γ1)

= ∥σ∥
H

1
2 (Γ1)

= inf
{

∥w∥H1(Ω) : w ∈ H1(Ω) and w = σ on ∂Ω
}
,

we get (4.2).
(ii) From (i) it follows that if f ∈ L2(Ω, ρ2

Γ1
(x)dx), τ ∈ H

1
2 (Γ1) and if η : Γ2 → R

belongs to (H1
0,Γ1

(Ω))′, then the problem




−∆u = f in Ω,
u = τ on Γ1,
∂u
∂ν = η

(4.4)

has a unique weak solution u ∈ H1(Ω).
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Definition 4.2. For τ ∈ H
1
2 (Γ1), η ∈ (H1

0,Γ1
(Ω))′, let

Sτ,η : L2(Ω, ρ2
Γ1(x)dx) → H1(Ω)

be the solution operator of the problem




∫

Ω

⟨∇u,∇φ⟩ =
∫

Ω

hφ+ η(φ) for any φ ∈ H1
0,Γ1(Ω),

u = τ on Γ1,

(4.5)

defined by Sτ,η(h) = u, where u is the weak solution of (4.5). If no confusion arises,
we will write S instead of Sτ,η.

Lemma 4.3. Let τ ∈ H
1
2 (Γ1), η ∈ (H1

0,Γ1
(Ω))′. Then:

(i) S : L2(Ω, ρ2
Γ1

(x)dx) → H1(Ω) is continuous,
(ii) S : L2(Ω, ρ2

Γ1
(x)dx) → L2(Ω) is a continuous and compact operator,

(iii) if h1 and h2 belong to L2(Ω, ρ2
Γ1

(x)dx) and h1 ≤ h2 then S(h1) ≤ S(h2),
(iv) if, in addition, τ ≥ 0 and η ≥ 0 then S(h) ≥ 0 for any nonnegative

h ∈ L2(Ω, ρ2
Γ1

(x)dx).

Proof. If h1 and h2 belong to L2(Ω, ρ2
Γ1

(x)dx) and if u1 = S(h1) and u2 = S(h2) then
u1 − u2 satisfies





∫

Ω

⟨∇(u1 − u2),∇φ⟩ =
∫

Ω

(h1 − h2)φ for any φ ∈ H1
0,Γ1(Ω),

u1 − u2 = 0 on Γ1,

(4.6)

and so, by (4.2),

∥u1 − u2∥H1(Ω) ≤ c ∥h1 − h2∥(H1(Ω))′ ≤ c′ ∥h1 − h2∥L2(Ω,ρ2
Γ1

(x)dx)

with c and c′ positive constants independent of h1 and h2. Then (i) holds, and (ii)
follows from (i) and from the fact that the inclusion H1(Ω) ↪→ L2(Ω) is continuous
and compact.

To prove (iii) observe that if u1 = S(h1) and u2 = S(h2), then, from (4.6) used
with φ = (u1 − u2)+, we get

∫
Ω |∇((u1 − u2)+)|2 ≤ 0 and so
∫

Ω

∣∣∇((u1 − u2)+)
∣∣2 = 0.

Then, by the Poincaré inequality of Remark 2.1(ii), (u1 − u2)+ = 0 and thus u1 ≤ u2.
To see (iv) suppose η ≥ 0 and 0 ≤ h ∈ L2(Ω, ρ2

Γ1
(x)dx). Let u = S(h). Then

∫

Ω

⟨∇u,∇φ⟩ =
∫

Ω

hφ+ η(φ) for any φ ∈ H1
0,Γ1(Ω).
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We take φ = −u− to obtain
∫

Ω

∣∣∇u−∣∣2 = −
∫

Ω

〈
∇u,∇u−〉

= −
∫

Ω

hu− −
∫

Γ2

ηu− ≤ 0.

Then
∫

Ω |∇u−|2 = 0 and so, by Remark 2.1(ii), u− = 0.

Proof of Theorem 1.6. Let uτ ∈ H1(Ω) be the solution of the problem




−∆uτ = g(·, uτ ) in Ω,
uτ = τ on Γ1,

uτ = 0 on Γ2

(4.7)

given by Theorem 1.3. Let η : Γ2 → R be such that η ∈ (H1
0,Γ1

(Ω))′ and η ≥ ∂uτ

∂ν Γ2

in (H1
0,Γ1

(Ω))′, let Φ ∈ H1(Ω) be the solution of the problem





∫

Ω

⟨∇Φ,∇φ⟩ =
(
η − ∂uτ

∂ν Γ2

)
(φ) for any φ ∈ H1

0,Γ1(Ω),

Φ = 0 on Γ1

(4.8)

(by Remark 4.1(i), there exists such a unique Φ), and let z = Φ + uτ . Since
η − ∂uτ

∂ν Γ2
≥ 0, Lemma 4.3(iv) gives that Φ ≥ 0, thus uτ ≤ z. Note that for any

nonnegative φ ∈ H1
0,Γ1

(Ω),

∫

Ω

⟨∇uτ ,∇φ⟩ =
∫

Ω

g(·, uτ )φ+ ∂uτ

∂ν Γ2
(φ) ≤

∫

Ω

g(·, uτ )φ+ η(φ),

and so, for any nonnegative φ ∈ H1
0,Γ1

(Ω),

∫

Ω

⟨∇z,∇φ⟩ =
∫

Ω

⟨∇uτ ,∇φ⟩ +
∫

Ω

⟨∇Φ,∇φ⟩

=
∫

Ω

g(·, uτ )φ+ ∂uτ

∂ν Γ2
(φ) +

(
η − ∂uτ

∂ν Γ2

)
(φ)

≥
∫

Ω

g(·,Φ + uτ )φ+ η(φ) =
∫

Ω

g(·, z)φ+ η(φ),

where we have used that ∂Φ
∂ν Γ2

(φ) =
∫

Ω ⟨∇Φ,∇φ⟩ and that g = g(x, s) is nonincreas-
ing in s.
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Then for any nonnegative φ ∈ H1
0,Γ1

(Ω),
∫

Ω

⟨∇uτ ,∇φ⟩ ≤
∫

Ω

g(·, uτ )φ+ η(φ) (4.9)

and ∫

Ω

⟨∇z,∇φ⟩ ≥
∫

Ω

g(·, z)φ+ η(φ). (4.10)

To prove the existence assertion of the theorem we will show that problem (1.2) has
a solution u∗ such that uτ ≤ u∗ ≤ z.

As in the proof of [35, Theorem 1.1] we define g : Ω × R → R by

g(x, s) :=





g(x, uτ (x)) if s ≤ uτ (x),
g(x, s) if uτ (x) < s < z(x),
g(x, z(x)) if s ≥ z(x).

It is easy to check that g is a nonnegative Carathéodory function on Ω ×R (because g
is a Carathéodory function on Ω× (0,∞) and uτ , z are measurable functions) and that
g(x, s) is nonincreasing in s. Moreover, if E ⊂ Ω is the set given by the condition (H2)
then g(x, s) > 0 for any x ∈ E and s > 0. Also, since uτ ≤ z and, taking into account
that, by Theorem 1.3, uτ ≥ cρ∂Ω for some c ∈ (0,∞) and that g(x, s) is nonnegative
and nonincreasing in s, we obtain that

0 ≤ g(·, s) ≤ g(·, uτ ) = g(·, uτ ) ≤ g(·, cρ∂Ω) (4.11)

for any s ∈ R, and so, for any v ∈ L2(Ω), 0 ≤ ρΓ1g(·, v) ≤ ρΓ1g(·, cρ∂Ω), and,
by (H3’), ρΓ1g(·, cρ∂Ω) ∈ L2(Ω). Therefore, taking into account the Hardy inequality
of Lemma 2.2 we have, for any φ ∈ H1

0,Γ1
(Ω),

∫

Ω

|g(·, v)φ| =
∫

Ω

ρΓ1g(·, v)
∣∣∣∣
φ

ρΓ1

∣∣∣∣ ≤ ∥ρΓ1g(·, v)∥2

∥∥∥∥
φ

ρΓ1

∥∥∥∥
2

≤ c′ ∥φ∥H1(Ω)

with c′ a positive constant independent of v and φ. Thus g(·, v) ∈ (H1
0,Γ1

(Ω))′ and

∥g(·, v)∥(H1
0,Γ1

(Ω))′ ≤ c′ (4.12)

with c′ independent of v. Following the lines of the proof of [35, Theorem 1.1] we consider
the operator T : L2(Ω) → L2(Ω) defined by

T (v) := S(g(·, v)).

with S given by Definition 4.2.
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We prove that:

(1) T is continuous,
(2) T is a compact operator,
(3) there exists R > 0 such that T (L2(Ω)) ⊂ B, where B is the closed ball in L2(Ω)

centered at 0 and with radius R.

To prove (1) we proceed similarly to the proof of Lemma 3.1(iii). It is enough to see
that if v ∈ L2(Ω), and if {vj}j∈N is a sequence in L2(Ω) that converges to v in L2(Ω),
then there exists a subsequence {vjk

}k∈N such that {T (vjk
)}k∈N converges to T (v)

in L2(Ω). Let v ∈ L2(Ω), and let {vj}j∈N be a sequence in L2(Ω) which converges to
v in L2(Ω), then there exists a subsequence {vjk

}k∈N such that {vjk
}k∈N converges to

v a.e. in Ω. Thus, since g is a Carathéodory function, {g(·, vjk
)}k∈N converges

to g(·, v) a.e. in Ω. Then limk→∞ |g(·, vjk
) − g(·, v)|2 = 0 a.e. in Ω. By (4.11),

|g(·, vjk
) − g(·, v)|2 ≤ 4g2(., cρ∂Ω), and, by (H3’) we have

∫
Ω ρ

2
Γ1
g2(·, cρ∂Ω) < ∞. Then,

by the Lebesgue dominated convergence theorem, {g(·, vjk
)}k∈N converges to g(·, v) in

L2(Ω, ρ2
Γ1

(x)dx). Then, by Lemma 4.3(ii), {S(g(·, vjk
))}k∈N converges to S(g(·, v))

in L2(Ω), i.e., {T (vjk
)}k∈N converges to T (v) in L2(Ω). Thus (1) holds.

To see (2) note that, by (4.11), {g(·, vj)}j∈N is bounded in L2(Ω, ρ2
Γ1

(x)dx) for any
sequence {vj}j∈N in L2(Ω), and that S : L2(Ω, ρ2

Γ1
(x)dx) → L2(Ω) is compact.

To see (3) observe that, by (4.2) and (4.12), we have, for any v ∈ L2(Ω),

∥T (v)∥2 = ∥S(g(·, v))∥2
≤ c(∥g(·, v)∥(H1

0 (Ω))′ + ∥τ∥
H

1
2 (Γ1)

+ ∥η∥(H1
0,Γ1

(Ω))′)

≤ c(c′ + ∥τ∥
H

1
2 (Γ1)

+ ∥η∥(H1
0,Γ1

(Ω))′)

with c and c′ positive constants independent of v.
Now, as in [35, Theorem 1.1], from (1), (2), (3) and the Schauder fixed point

theorem, there exists u∗ ∈ L2(Ω) such that T (u∗) = u∗, i.e., such that





−∆u∗ = g(·, u∗) in Ω,
u∗ = τ on Γ1,
∂u∗

∂ν = η on Γ2.

(4.13)

To complete the proof of the existence assertion of the theorem it suffices to see that
uτ ≤ u∗ ≤ z (because in such a case g(·, u∗) = g(·, u∗) and, by Theorem 1.3, uτ ≥ cρ∂Ω
for some positive constant c). From (4.10), (4.13), and since g(·, z) = g(·, z) we have,
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for any nonnegative φ ∈ H1
0,Γ1

(Ω),
∫

Ω

⟨∇(z − u∗),∇φ⟩ =
∫

Ω

⟨∇z,∇φ⟩ −
∫

Ω

⟨∇u∗,∇φ⟩

≥
∫

Ω

g(·, z)φ+ η(φ) −
∫

Ω

g(·, u∗) − η(φ)

=
∫

Ω

(g(·, z) − g(·, u∗))φ

which, by taking φ = (z − u∗)− gives
∫

Ω

∣∣∇((z − u∗)−)
∣∣2 ≤ −

∫

Ω

(g(·, z) − g(·, u∗))(z − u∗)− ≤ 0,

the last inequality because g(x, s) is nonincreasing in s. Then, by Remark 2.1(ii),
(z − u∗)− = 0 and so u∗ ≤ z.

Similarly, from (4.7), (4.13) and since g(·, uτ ) = g(·, uτ ), we have, for any nonnega-
tive φ ∈ H1

0,Γ1
(Ω),

∫

Ω

⟨∇(u∗ − uτ ),∇φ⟩ =
∫

Ω

(g(., u∗) − g(·, uτ ))φ+ η(φ) − ∂uτ

∂ν Γ2
(φ)

≤
∫

Ω

(g(·, u∗) − g(·, uτ ))φ,
(4.14)

the last inequality by our assumption that η ≥ ∂uτ

∂ν Γ2
. Observe that u∗ −uτ ∈ H1

0,Γ1
(Ω)

and that, since g(·, s) is nonincreasing in s,

(g(·, u∗) − g(·, uτ ))(u∗ − uτ )− ≥ 0.

Thus, taking φ = −(u∗ − uτ )− in (4.14) we obtain
∫

Ω |∇((u∗ − uτ )−)|2 = 0, which
implies (u∗ − uτ )− = 0 and so uτ ≤ u∗.

Suppose that w ∈ H1(Ω) is another solution of (1.2). Then u∗ −w ∈ H1
0,Γ1

(Ω) and,
in a weak sense, 




−∆(u∗ − w) = g(·, u∗) − g(., w) in Ω,
u∗ − w = 0 on Γ1,
∂(u∗−w)

∂ν = 0 on Γ2,

(4.15)

that is,
∫

Ω

⟨∇(u∗ − w),∇φ⟩ =
∫

Ω

(g(·, u∗) − g(·, w))φ for any φ ∈ H1
0,Γ1(Ω), (4.16)
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Now, g(x, ·) is nonincreasing on (0,∞) for a.e. x ∈ Ω, and so

g(·, u∗) − g(·, w)(u∗ − w) ≤ 0 a.e. in Ω.

Thus, taking φ = u∗ − w in (4.16), we get
∫

Ω

|∇(u∗ − w)|2 =
∫

Ω

(g(·, u∗) − g(·, w))(u∗ − w) ≤ 0

and so ∥∇(u∗ − w)∥2 = 0, Then, by Remark 2.1(ii), u∗ = w in Ω. This concludes the
proof of the part (i) of the theorem.

To see (ii), suppose that η < ∂uτ

∂ν Γ2
and that u is a weak solution of problem (1.2).

Then, for any nonnegative φ ∈ H1
0,Γ1

(Ω),
∫

Ω

⟨∇u,∇φ⟩ =
∫

Ω

g(·, u)φ+ η(φ) ≤
∫

Ω

g(·, u)φ+ ∂uτ

∂ν Γ2
(φ),

and ∫

Ω

⟨∇uτ ,∇φ⟩ =
∫

Ω

g(·, uτ )φ+ ∂uτ

∂ν Γ2
(φ).

Thus, for any nonnegative φ ∈ H1
0,Γ1

(Ω),
∫

Ω

⟨∇(u− uτ ),∇φ⟩ ≤
∫

Ω

(g(·, u) − g(·, uτ ))φ.

Now we take φ = (u− uτ )+ to obtain that
∫

Ω

∣∣∇((u− uτ )+)
∣∣2 ≤

∫

Ω

(g(·, u) − g(·, uτ ))(u− uτ )+ ≤ 0,

the last inequality because g(x, s) is nonincreasing in s. Thus (u− uτ )+ = 0 and so
u ≤ uτ . Since u is nonnegative and uτ = 0 on Γ2 we conclude that u = 0 on Γ2.
Then u is a solution of problem (1.13) and, by Theorem 1.3, this problem has a unique
solution. Then u = uτ , and so η = ∂uτ

∂ν Γ2
, which is a contradiction. Therefore no such

a solution u exists.

Lemma 4.4. If 0 ≤ f ∈ L2(Ω, d2
Γ1

(x)dx), 0 ≤ τ ∈ H
1
2 (Γ1), and if u ∈ H1(Ω) is the

weak solution of the problem




−∆u = f in Ω,
u = τ on Γ1,

u = 0 on Γ2,

then ∂u
∂ν Γ2

≤ 0.
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Proof. Let Ψ : ∂Ω → R be defined by Ψ = τ on Γ1 and Ψ = 0 on Γ2. Then
0 ≤ Ψ ∈ H

1
2 (∂Ω) and thus there exists Ψ̃ ∈ H1(Ω) such that Ψ̃ = Ψ on ∂Ω. By

replacing Ψ̃ by Ψ̃+ if necessary, we can assume that Ψ̃ ≥ 0 in Ω. Now, Ω is a bounded
domain with C2 boundary, and then C∞(Ω) is dense in W 1,2(Ω) (see [1, Theorem 3.18]).
Then there exists a sequence {Ψ̃j}j∈N ⊂ C∞(Ω) such that {Ψ̃j}j∈N converges to Ψ̃
in H1(Ω). An inspection of the proof of [1, Theorem 3.18] shows that, since Ψ̃ is
nonnegative, the functions Ψ̃j can be chosen nonnegative. For γ > 0, let ΩΓ2,γ and
AΓ2,γ be defined as in (2.1). Let δ be a positive number such that Γ1 ∩ AΓ2,4δ = ∅,
and let ϕ ∈ C∞(Ω) be such that 0 ≤ ϕ ≤ 1, ϕ = 0 in AΓ2,δ and ϕ = 1 in ΩΓ2,2δ.
Then 0 ≤ ϕΨ̃j ∈ C∞(Ω), ϕΨ̃j = 0 on Γ2, and {ϕΨ̃j}j∈N converges to ϕΨ̃ in H1(Ω).
For j ∈ N, let Ψj := ϕΨ̃j|∂Ω and let fj : Ω → R be defined by fj(x) := min {j, f(x)}.
Then Ψj = 0 on Γ2,

{
Ψj|Γ1

}
j∈N converges to τ in H

1
2 (Γ1) and {fj}j∈N converges

to f in L2(Ω, d2
Γ1

(x)dx). In particular, {fj}j∈N converges to f in (H1
0,Γ1

(Ω))′. Now,
fj ∈ L∞(Ω) and Ψj is the restriction to ∂Ω of a function in C∞(Ω). Then (see, e.g.,
[29, Theorem 2.4.2.5], see also [26, Theorem 9.15]), the problem

{
−∆uj = fj in Ω,
uj = Ψj on ∂Ω

(4.17)

has a unique strong solution uj ∈ ⋂
1<p<∞ W 2,p(Ω) ⊂ C1(Ω). Since fj ≥ 0 and Ψj ≥ 0

we have uj ≥ 0. Also, uj = 0 on Γ2, and then the Hopf boundary lemma, as stated in
[42, Theorem 1.1], gives that ∂uj

∂ν (x) < 0 for any x ∈ Γ2. On the other hand, {fj}j∈N
converges to f in (H1

0,Γ1
(Ω))′ and {Ψj}j∈N converges to Ψ in H

1
2 (∂Ω), then {uj}j∈N

converges to u in H1(Ω). Let φ be an arbitrary nonnegative function in H1
0,Γ1

(Ω).
From (4.17), we have − div(φ∇uj) + ⟨∇uj ,∇φ⟩ = fjφ in Ω, and so, by the divergence
theorem (as stated, for example, in [14, Lemma A.1]),

−
∫

Γ2

φ
∂uj

∂ν
+

∫

Ω

⟨∇uj ,∇φ⟩ =
∫

Ω

fjφ.

Then
∫

Ω ⟨∇uj ,∇φ⟩−
∫

Ω fjφ ≥ 0 and thus, taking into account that {∇uj}j∈N converges
to ∇u in L2(Ω,Rn) and that {fj}j∈N converges to f in (H1

0,Γ1
(Ω))′, we get that∫

Ω ⟨∇u,∇φ⟩ −
∫

Ω fφ ≥ 0. Then ∂u
∂ν Γ2

≤ 0.

Proof of Corollary 1.7. Let uτ be the solution (given by Theorem 1.3) of problem (4.7).
By Lemma 4.4, we have ∂u

∂ν Γ2
≤ 0. Then the corollary follows immediately from

Theorem 1.6.
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