Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Magnesium alloys are well known for their biocompatibility and biodegradable properties [9], [27] owing to the fact that magnesium is a mineral crucial for human body, especially for bone tissue. There are studies [17] on using WE43 additively manufactured magnesium scaffolds for full bone and soft tissue regeneration. Moreover, magnesium implants in bones were investigated as having higher bone-implant interface strength than titanium ones [3]. In this paper, the results of the studies on MAP21 magnesium powder selective laser melting process optimization as a starting point for further bioapplications are presented. MAP21 magnesium alloy owing to its high mechanical properties, excellent vibration damping characteristic and good creep resistance is a promising material to be tested for scaffold structures. The study for the first time shows successful SLM manufacturing of dense samples made of MAP21 alloy. Using an algorithm based on design of experiment (DoE) method [21], the SLM process parameters were designated. The porosity was investigated as a SLM process optimization parameter. High density of produced sample, up to 99%, was achieved. Microstructure and oxidation level after selective laser melting (SLM) manufacturing were characterized. Fine grain microstructure and three kinds of precipitations were found Nd (Gd, Zr, Mg), Mg (Nd, Gd, Zr) and Mg (Zr, Nd, Gd, Zn)). In order to determine the mechanical properties of MAP21 alloy processed with SLM technology, static tensile tests and microhardness tests were conducted, resulting in mechanical properties (Rm = 167 MPa, E = 38.6 GPa, 63–74 HB) comparable with as-cast alloy. A discussion was held on further research opportunities for biomedical use of SLM-ed MAP21 alloy.
Czasopismo
Rocznik
Tom
Strony
157--168
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Wrocław University of Science and Technology, Wrocław, Poland
- Department of Laser Technologies, Automation and Production management, Mechanical Engineering Faculty, Wrocław University of Science and Technology, Wrocław, Poland
autor
- Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Wrocław University of Science and Technology, Wrocław, Poland
autor
- Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Wrocław University of Science and Technology, Wrocław, Poland
- Department of Laser Technologies, Automation and Production management, Mechanical Engineering Faculty, Wrocław University of Science and Technology, Wrocław, Poland
autor
- Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Wrocław University of Science and Technology, Wrocław, Poland
- Department of Laser Technologies, Automation and Production management, Mechanical Engineering Faculty, Wrocław University of Science and Technology, Wrocław, Poland
autor
- Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Wrocław University of Science and Technology, Wrocław, Poland
- 2 Department of Laser Technologies, Automation and Production management, Mechanical Engineering Faculty, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
- [1] ALI M., HUSSEIN M.A., AL-AQEELI N., Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties, J. Alloys Compd., 2019, 792, 1162–1190, DOI: 10.1016/j.jallcom.2019.04.080.
- [2] BARTOLO P., KRUTH J.-P., SILVA J., LEVY G., MALSHE A., RAJURKAR K., MITSUISHI M., CIURANA J., LEU M., Biomedical production of implants by additive electro-chemical and physical processes, CIRP Ann., 2019, 61(2), 635–655, DOI: 10.1016/j.cirp.2012.05.005.
- [3] CASTELLANI C., LINDTNER R.A., HAUSBRANDT P., TSCHEGG E., STANZL-TSCHEGG S.E., ZANONI G., BECK S., WEINBERG A.-M., Bone–implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control, Acta Biomater., 2011, 7(1), 432–440, DOI: 10.1016/j.actbio.2010.08.020.
- [4] CHAKRABORTY B.P., AL-SAADI S., CHOUDHARY L., HARANDI S.E., SINGH R., Magnesium Implants: Prospects and Challenges, Materials, 2019, 12(1), 136, DOI: 10.3390/ma12010136.
- [5] CHEN J., TAN L., YU X., ETIM I.P., IBRAHIM M., YANG K., Mechanical properties of magnesium alloys for medical application: A review, J. Mech. Behav. Biomed. Mater., 2018, 87, 68–79, DOI: 10.1016/j.jmbbm.2018.07.022.
- [6] CHEN Y., XU Z., SMITH C., SANKAR J., Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater., 2014, 10(11), 4561–4573, DOI: 10.1016/j.actbio.2014.07.005.
- [7] GANGIREDDY S., GWALANI B., LIU K., FAIERSON E.J., MISHRA R.S., Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy, Addit. Manuf., 2019, 26, 53–64, DOI: 10.1016/j.addma.2018.12.015.
- [8] GEBHARDT A., Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing, Hanser Publishers, Munich, Cincinnati, 2012, DOI: 10.3139/9783446431621.
- [9] GU X., ZHENG Y., CHENG Y., ZHONG S., XI T., In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 2009, 30(4), 484–498, DOI: 10.1016/j.biomaterials.2008.10.021.
- [10] GULBRANSEN E.A., The oxidation and evaporation of magnesium at temperatures from 400 °C to 500 °C, J. Electrochem. Soc., 1945 (87), 589–599, DOI: 10.1149/1.3071667.
- [11] HU D., WANG Y., ZHANG D., HAO L., JIANG J., LI Z., CHEN Y., Experimental Investigation on Selective Laser Melting of Bulk Net-Shape Pure Magnesium, Mater. Manuf. Process, 2015, 30(11), 1298–1304, DOI: 10.1080/10426914.2015.1025963.
- [12] JUNKA A.F., SZYMCZYK P.E., SECEWICZ A., PAWLAK A., SMUTNICKA D., ZIÓŁKOWSKI G.J., BARTOSZEWICZ M., CHLEBUS E., The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm, Acta Bioeng. Biomech., 2016, 012016, ISSN 1509-409X, DOI: 10.5277/ABB-00333-2015-01.
- [13] KANIA A., NOWOSIELSKI R., GAWLAS-MUCHA A., BABILAS R., Mechanical and Corrosion Properties of Mg-Based Alloys with Gd Addition, Materials, 2019, 12(11), 1775, DOI: 10.3390/ma12111775.
- [14] KIEŁBUS A., Microstructure and mechanical properties of Elektron 21 alloy after heat treatment, J. Achiev. Mater. Manuf. Eng., 2007, 20, 4.
- [15] KURZYNOWSKI T., CHLEBUS E., KUŹNICKA B., REINER J., Parameters in selective laser melting for processing metallic powders, [in:] E. Beyer, T. Morris (Eds.), San Francisco, California, USA, 2012, 823914, DOI: 10.1117/12.907292.
- [16] KURZYNOWSKI T., SZYMCZYK P.E., ZIÓŁKOWSKI G.J., DZIEDZIC R., PAWLAK A.P., GRUBER K., Annual report on the implementation of the AMgAvio project for 2017, Magnesium based alloys processed by selective laser melting for aerospace applications, Mechanical Depa tment of Wrocław University of Science and Technology, Wrocław 2018.
- [17] LI Y., ZHOU J., PAVANRAM P., LEEFLANG M.A., FOCKAERT L.I., POURAN B., TÜMER N., SCHRÖDER K.-U., MOL J.M.C., WEINANS H., JAHR H., ZADPOOR A.A., Additively manufactured biodegradable porous magnesium, Acta Biomater., 2018, 67, 378–392, DOI: 10.1016/j.actbio.2017.12.008.
- [18] LIU C., REN Z., XU Y., PANG S., ZHAO X., ZHAO Y., Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review, Scanning, 2018, 1–15, DOI: 10.1155/2018/9216314.
- [19] LIU C., ZHANG M., CHEN C., Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing, Mater. Sci. Eng. A., 2017, 703, 359–371, DOI: 10.1016/j.msea.2017.07.031.
- [20] MANAKARI V., PARANDE G., GUPTA M., Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review, Metals, 2016, 7(1), 2, DOI: 10.3390/met7010002.
- [21] PAWLAK A., ROSIENKIEWICZ M., CHLEBUS E., Design of experiments approach in AZ31 powder selective laser melting process optimization, Arch. Civ. Mech. Eng. 2017, 17 (1), 9–18, DOI: 10.1016/j.acme.2016.07.007.
- [22] ROY S., DAS M., CHAKRABORTY P., BISWAS J.K., CHATTERJEE S., KHUTIA N., SAHA S., CHOWDHURY A.R., Optimal selection of dental implant for different bone conditions based on the mechanical response, Acta Bioeng. Biomech., 2017, 19 (2), DOI: 10.5277/ABB-00530--2015-03.
- [23] RYNIEWICZ A.M., BOJKO Ł., RYNIEWICZ W.I., Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions, Acta Bioeng. Biomech., 2016, DOI: 10.5277/ABB-00193-2014-02.
- [24] SALEHI M., MALEKSAEEDI S., FARNOUSH H., NAI M.L.S., MEENASHISUNDARAM G.K., GUPTA M., An investigation into interaction between magnesium powder and Ar gas: Implications for selective laser melting of magnesium, Powder Technol., 2018, 333, 252–261, DOI: 10.1016/j.powtec.2018.04.026.
- [25] SAVALANI M.M., PIZARRO J.M., Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium, Rapid Prototyp J., 2016, 22(1), 115–122, DOI: 10.1108/RPJ-07-2013-0076.
- [26] TOVAR N., WITEK L., ATRIA P., SOBIERAJ M., BOWERS M., LOPEZ C.D., CRONSTEIN B.N., COELHO P.G., Form and functional repair of long bone using 3D-printed bioactive scaffolds, J. Tissue Eng. Regen. Med., 2018, 12 (9), 1986–1999, DOI: 10.1002/term.2733.
- [27] WITTE F., KAESE V., HAFERKAMP H., SWITZER E., MEYER-LINDENBERG A., WIRTH C.J., WINDHAGEN H., In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 2005, 26(17), 3557–3563, DOI: 10.1016/j.biomaterials.2004.09.049.
- [28] YANG Y., HE C., DIANYU E., YANG W., QI F., XIE D., SHEN L., PENG S., SHUAI C., Mg bone implant: Features, developments and perspectives, Mater., Des., 2020, 185, 108259, DOI: 10.1016/j.matdes.2019.108259.
- [29] YUAN L., DING S., WEN C., Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review, Bioact. Mater., 2019, 4 (1), 56–70, DOI: 10.1016/j.bioactmat.2018.12.003.
- [30] ZHAO D., WITTE F., LU F., WANG J., LI J., QIN L., Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective, Biomaterials, 2017, 112, 287–302, DOI: 10.1016/j.biomaterials.2016.10.017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c828384-c0bd-4f26-97bd-cc8057a0fa5c