PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Trace Metals Leaching During Rainfall Events from Building Rooftops with Different Types of Coverage – Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Runoff water is an important medium transporting various types of pollution originating from the atmosphere and washed out from roofing materials. The study presents a quality assessment of runoff from different roofs in the context of trace metal concentrations. The analysed rooftops were covered with copper, tar paper and ceramic tile. The quality of the rain water collected at the same time satisfies the demands of the first grade of cleanliness according to (Journal of Laws, 2016 item1187). The highest content of copper was leached from the copper roof, containing 10.23 mg∙dm-3. In the case of zinc, the highest concentration of 15.52 mg∙dm-3 was present in the runoff from the roof covered with thermally bonded tar paper. The amount of trace metals in the ceramic roof runoff was the lowest and only for zinc slightly exceeded 1.47 mg∙dm-3 – the value determined for II class of purity. In the paper, the different levels of heavy metals leaching from different roofing materials have been confirmed.
Słowa kluczowe
Rocznik
Strony
45--51
Opis fizyczny
Bibliogr. 19 poz., tab., rys.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Chang M., McBroom M.W., Beasley R.S., 2004. Roofing as a source of nonpoint water pollution. Journal of Environmental Management, 73, 307–315.
  • 2. Charters F.J., Cochrane T.A., O’Sullivan A.D., 2016. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate. Science of the Total Environment, 550, 265–272.
  • 3. Gajewska M., Stosik M., Wojciechowska E., Obarska-Pempkowiak H., 2013. The impact of wastewater treatment technologies on the particle size spectrum in the outflow (in Polish). Rocznik Ochrona Środowiska, 15(11), 1191–1206.
  • 4. http://pomiary.gdmel.pl/
  • 5. Kotowski A., Kaźmierczak B., Dancewicz A., 2010. Modeling of precipitation for sewage sizing (in Polish) PAN Komitet Inżynierii Lądowej i Wodnej Instytut Podstawowych Problemów Techniki, Warszawa.
  • 6. Kaye J., Groffman P., Grimm N., Baker L., Pouyat R., 2006. A distinct urban biogeochemistry? Trends in Ecology and Evolution 21, 192–199.
  • 7. Kim R-H., Lee S., Kim Y-M., Lee J-H., Kim S-K., Kim S-G., 2005. Pollutants in rainwater runoff inKorea: their impacts on rainwater utilization. Environmental Technology, 26, 411–420.
  • 8. Länderarbeitsgemeinschaft Wasser (LAWA), 1998. Beurteilung der Wasserbeschaffenheit von Flieβgewässern in der Bundesrepublik Deutschland – Chemische Gewässergűteklassifikation.
  • 9. Nawrot N., Matej-Łukowicz K., Wojciechowska E., 2018. Change of heavy metals concentrations in sediments deposited in retention tanks on Oliwa Stream in Gdansk after the flood incident, Polish Journal of Environmental Studies, in press.
  • 10. Obarska-Pempkowiak H., Gajewska M., Wojciechowska E., Pempkowiak J. 2015. Treatment Wetlands for Environmental Pollution Control. Rowiński P. (ed.) GeoPlanet: Earth and Planetary Sciences. Springer International Publishing, pp. 169.
  • 11. Ociepa E., Kisiel A., Lach J., 2010. Contamination of rainwater flowing into sewage systems (in Polish). Proceeding of ECOpole, Vol. 4, No. 2.
  • 12. Pennington S.L., Webster-Brown J.G., 2010. Stormwater runoff quality from copper roofing, Auckland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 42(1), 99–108.
  • 13. Polkowska Ż., Namieśnik J., 2008. Road and roof runoff waters as a source of pollution in a big urban agglomeration (Gdansk, Poland). Ecological Chemistry and Engineering, Vol. 15, No. 3.
  • 14. PN-EN 12056–3:2002. Systemy kanalizacji grawitacyjnej wewnątrz budynków – Część 3: Przewody deszczowe – Projektowanie układu i obliczenia.
  • 15. Sakson G., Zawilski M., Badowska E., Brzezińska A., 2014. Zanieczyszczenia ścieków opadowych jako podstawa wyboru sposobu ich zagospodarowania, Journal of Civil Engineering, Environment and Architecture, t.XXXI, z.61 (3/I/14), 253–264.
  • 16. Sneddon, R., Trembly, L., 2011. The New Zealand King Salmon Company Limited:Assessment of Environmental Effects – Copper and Zinc. Prepared for The NewZealand King Salmon Company Ltd. Cawthron Report No. 1984, pp. 53.
  • 17. Tsakovski S., Tobiszewski M., Simeonov V., Polkowska Ż., Namieśnik J., 2010. Chemical composition of water from roofs in Gdansk, Poland, Environmental Pollution 158, 84–91.
  • 18. Wallinder L.O., Leygraf C., Karlen C., Heijerick D., Janssed C.R., 2001. Atmospheric corrosion of zinc based materials: runoff rates, chemical speciation and ecotoxicity effects, Corrosion Science 43, 809–816.
  • 19. Wojciechowska E., Rackiewicz A., Nawrot N., Matej- Łukowicz K., Obarska-Pempkowiak H., 2017. Studies on the distribution of heavy metals in bottom sediments of reservoirs in the urban basin (in Polish). Rocznik Ochrona Środowiska, 19, 572–589.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c7a3009-e046-44b8-b033-8cc80f783eb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.