PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Handling and transportation properties of rapeseed biomass as affected by particle size

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rapeseed by-products of seeds de-oiling, particularly expellers and post-extracted meal, are currently considered an important biomass that can be used as an alternative energy source, either in raw form or after conversion to biochar. Rapeseed biomass represents a difficult-to-handle cargo, mainly due to its sensitivity to mechanical, climatic, and biological impacts, as well as its dusty nature. This study aims to determine the physical properties of rapeseed meals and their fractions. Morphological and chemical features of six particle sets are investigated in order to explain the variation in their physical properties having importance in handling and transportation processes. The true density of fractions increases when the particle size decreases due to the diminishing quantitative share of seed coats. No correlation is observed between true and bulk densities, as the particle shape, surface sculpture, and adhesion affect the mutual particle arrangements. Along with a decrease in the particle size from 0.4 mm, a rapid decrease in the flowability is observed. The tendency of the finest dust (d < 0.075 mm) to form agglomerated complexes causes its lower bulk density, higher porosity, and higher angles of repose in comparison to coarse dust (0.075–0.4 mm). It is concluded that a relatively low tendency to free flowing of natural RSM is mainly caused by its wide-ranging particle size distribution and their geometry differentiation, which facilitate mutual particle interlockings. The known cases of blockages of silos, bins, hoppers, and transfer chutes may be mainly caused by the powder fractions (< 0.2 mm), with a much lower flowability than other particles.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Maritime University of Szczecin, Faculty of Economics and Transport Engineering 11 Henryka Pobożnego St., 70-507 Szczecin, Poland
Bibliografia
  • 1. Beakawi Al-Hashemi, H.M. & Baghabra Al-Amoudi, O.S. (2018) A review on the angle of repose of granular materials. Powder Technology 330, pp. 397–417.
  • 2. BN-87/91350-10. Pasze prasowane. Oznaczanie kata naturalnego usypu granul i brykietów.
  • 3. Bojanowska, M., Chmiel, J. & Pańcyk, K. (2016) The role of dust fractions of rapeseed meal in the wear of cargo handling system. Solid State Phenomena 252, pp. 21–30.
  • 4. Bojanowska, M. & Leśmian-Kordas, R. (2009) Wybuchowość pyłów śruty rzepakowej. Polish Journal of Commodity Science 1, pp. 102–115.
  • 5. Bowszys, J. (2007) Rozwarstwianie nasion rzepaku podczas wypływu z silosów. Inżynieria Rolnicza 9 (97), pp. 21–26.
  • 6. Çalişir, S., Marakoğlu, T., Öğüt, H. & Öztürk, Ö. (2005) Physical properties of rapeseed (Brassica napus oleifera L.). Journal of Food Engineering 69, pp. 61–66.
  • 7. Carr, M.J., Roberts, A.W. & Wheeler, C.A. (2019) A revised methodology for the determination of bulk material cohesion and adhesion. Advanced Powder Technology 30, pp. 2110–2116.
  • 8. Chibowska, M., Smulikowska, S. & Pastuszewska, B. (2000) Metabolizable energy value of rapeseed meal and its fractions for chickens as affected by oil and fibre content. Journal of Animal and Feed Sciences 9, pp. 371–378.
  • 9. Coşkuner, Y. & Gökbudak, A. (2016) Dimensional specific physical properties of fan palm fruits, seeds and seed coats (Washingtonia robusta). International Agrophysics 30, pp. 301–309.
  • 10. EN 50281-2-1:1999. Electrical apparatus for use in the presence of combustible dust. Part 2–1: Test methods. Methods of determining minimum ignition temperatures of dust.
  • 11. Fauduet, H., Coic, J.P., Lessire, M., Quinsac, A., Ribaillier, D. & Rollin, P. (1995) Rapeseed meal upgrading – pilot scale preparation of rapeseed meal materials with high or low glucosinolate contents. Animal Feed Science and Technology 56, pp. 99–109.
  • 12. Fediol (2021) Evolution 1980–2021. [Online] Available from: https://www.fediol.eu/web/evolution%201980%20 %202018/1011306087/list1187970169/f1.html [Accessed: September 01, 2021].
  • 13. Fitzpatrick, J. (2013) Powder properties in food production systems. In: Bhandari, B., Bansal, N., Zhang, M. & Schuck, P. (Eds). Handbook of food powders. Processes and properties. UK: Woodhead Publishing Limited.
  • 14. Fürll, C. & Hoffmann, T. (2013) Flow properties of components for dry compound feed. Powder Technology 235, pp. 838–841.
  • 15. Gabr, D.G. (2014) Seed morphology and seed coat anatomy of some species of Apocynaceae and Asclepiadaceae. Annals of Agricultural Science 59, pp. 229–238.
  • 16. Gupta, A. & Yan, D. (2006) Mineral Processing Design and Operation. Chapter 2. Particle Size Estimation and Distributions. Elsevier Science.
  • 17. Hansen, J.Ø., Skrede, A., Mydland, L.T. & Øverland, M. (2017) Fractionation of rapeseed meal by milling, sieving and air classification – Effect on crude protein, amino acids and fiber content and digestibility. Animal Feed Science and Technology 230, pp. 143–153.
  • 18. Horabik, J. (2001) Charakterystyka właściwości fizycznych roślinnych materiałów sypkich istotnych w procesach składowania. Acta Agrophysica 54. Lublin: Institute of Agrophysics, Polish Academy of Sciences.
  • 19. Horabik, J. & Molenda, M. (2002) Właściwości fizyczne sypkich surowców spożywczych. Acta Agrophysica 74. Lublin: Institute of Agrophysics, Polish Academy of Sciences.
  • 20. IMSBC (2018) International Maritime Solid Bulk Cargoes Code and Supplement, IMO, London.
  • 21. Iqbal, T. & Fitzpatrick, J.J. (2006) Effect of storage conditions on the wall friction characteristics of three food powders. Journal of Food Engineering 72, pp. 273–280.
  • 22. ISO 2591-1:1988. Test sieving – Part 1: Methods using test sieves of woven wire cloth and perforated metal plate.
  • 23. Khanal, M., Elmouttie, M. & Adhikary, D. (2017) Effects of particle shapes to achieve angle of repose and force displacement behavior on granular assembly. Advanced Powder Technology 28, pp. 1972–1976.
  • 24. Kibar, H. & Öztürk, T. (2008) Physical and mechanical properties of soybean. International Agrophysics 22, pp. 239–244.
  • 25. Koch, R. & Noworyta, A. (2003) Procesy mechaniczne w inżynierii chemicznej. 3rd Edition Warszawa: WNT.
  • 26. Kukelko, D., Jayas, D.S., White, N.D.G. & Britton, M.G. (1988) Physical properties of canola (rapeseed) meal. Canadian Agricultural Engineering 30, pp. 61–64.
  • 27. Liu, L.X., Marziano, I., Bentham, A.C., Litster, J.D., White, E.T. & Howes, T. (2008) Effect of particle properties on the flowability of ibuprofen powders. International Journal of Pharmaceutics 362, pp. 109–117.
  • 28. Manikantan, M.R., Ambrose, R.P.K. & Alavi, S. (2015) Flow specific properties of coconut flours. International Agrophysics 29, pp. 459–465.
  • 29. Mańkowska, M., Pluciński, M. & Kotowska, I. (2021) Biomass sea-based supply chains and the secondary ports in the era of decarbonization. Energies 14, 1796.
  • 30. Matuttis, H.G., Luding, S. & Herrmann, H.J. (2000) Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technology 109, pp. 278–292.
  • 31. Mińkowski, K. (2002) Influence of dehulling of rape seeds on chemical composition of meal. Animal Feed Science and Technology 96, pp. 237–244.
  • 32. Molenda, M., Horabik, J., Thompson, S.A & Ross I.J. (2004) Effects of grain properties on loads in model silo. International Agrophysics 18, pp. 329–332.
  • 33. Özçimen, D. & Karaosmanoğlu, F. (2004) Production and characterization of bio-oil and biochar from rapeseed cake. Renewable Energy 29, pp. 779–787.
  • 34. PIP (2006) Państwowa Inspekcja Pracy Oddział Opole, Ślósarczyk, J. & Warsitz, M. Implozje w silosach. Inspektor Pracy 4, pp. 21–23.
  • 35. PN-EN 1236:1999. Nawozy – Oznaczanie gęstości nasypowej (luźnej).
  • 36. PN-R-64798:2009. Pasze – Oznaczanie rozdrobnienia.
  • 37. Shinohara, K., Oida, M. & Golman, B. (2000) Effect of particle shape on angle of internal friction by triaxial compression test. Powder Technology 107, pp. 131–136.
  • 38. Sosulski, F. & Zadernowski, R. (1981) Fractionation of rapeseed meal into flour and hull components. Journal of the American Oil Chemists’ Society 58, pp. 96–98.
  • 39. Stolarski, M.J., Warmiński, K., Krzyżaniak, M., Olba- -Zięty, E. & Akincza, M. (2020) Bioenergy technologies and biomass potential vary in Northern European countries. Renewable and Sustainable Energy Reviews 133, 110238.
  • 40. Sturaro, A., Rella, R., Parvoli, G., Ferrara, D. & Doretti, L. (2003) Chemical evidence and risks associated with soybean and rapeseed meal fermentation. Chemosphere 52, pp. 1259–1262.
  • 41. Święch, E., Raj, S., Pastuszewska, B., Taciak, M., Bartkowiak-Broda, I. & Smulikowska, S. (2016) Nutritional value of yellow-seeded winter rapeseed cakes for growing pigs. Agricultural and Food Science 25, pp. 99–110.
  • 42. Ucar, S. & Ozkan, A.R. (2008) Characterization of products from the pyrolysis of rapeseed oil cake. Bioresource Technology 99, pp. 8771–8776.
  • 43. Unal, H., Sincik, M. & Izli, N.C. (2009) Comparison of some engineering properties of rapeseed cultivars. Industrial Crops and Products 30, pp. 131–136.
  • 44. USDA (2022) United States Department of Agriculture Foreign Agricultural Service. Oilseeds: World Markets and Trade. Available from: https://www.fas.usda.gov/data/ oilseeds-world-markets-and-trade [Accessed: October 17, 2022].
  • 45. Wang, W., Zhang, J., Yang, S., Zhang, H., Yang, H. & Yue, G. (2010) Experimental study on the angle of repose of pulverized coal. Particuology 8, pp. 482–485.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c75eb13-b2ca-46d3-8eeb-f59d27858f06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.