PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Reliability of geodetic control measurements of high dams as a guarantee of safety of the construction and the natural environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the safety assessment of hydro-technical objects, it is necessary to combine different measurement techniques, calculations and experience of specialists in various fields of engineering. That is possible due to the current development of surveying technology. Undoubtedly, the integration of measurements, including technical assessment as well as object behaviour modelling, makes it possible to perform more comprehensive assessment of objects. Nevertheless, in order to obtain a multidimensional overview of an examined object – especially water dam – it is necessary to know all the possible errors that appear along the “observer-instrument-object” path. In this paper, the authors intended to investigate the influence of atmospheric conditions on the results of geodetic deformation measurements and attempted to consider surface deformation analysis, which is part of obligatory inspections of hydro-technical objects. The study was based on the geometry assessment of the vent wall of Rożnów water dam located within the borders of the South-Polish Protected Landscape Area. The measurements took place in the years 2013‒2015 and were performed using Z + F Imager 5010 laser scanner equipped with an integrated thermal camera. Surveying results and analyses based on archival data and forecasts of atmospheric conditions at the location of the hydro-technical facility can be applied while elaborating the rules for a control date selection. The proper definition of a measurement cycle will make it possible to avoid errors of interpretation for those facilities important from the flood protection, recreation and nature perspectives.
Rocznik
Strony
87--98
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., tab.
Twórcy
  • Chair of Engineering Geodesy and Measurement and Control Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology, 1 Pl. Politechniki, 00-661 Warsaw, Poland
  • Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, 166 Nowoursynowska Str., 02-787 Warsaw, Poland
autor
  • Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, 166 Nowoursynowska Str., 02-787 Warsaw, Poland
autor
  • Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, 166 Nowoursynowska Str., 02-787 Warsaw, Poland
Bibliografia
  • [1] W. Prószyński and M. Kwaśniak, “Principles of geodetic displacement measurements”, Oficyna Wydawnicza Politechniki Warszawskiej, 2015, [in Polish].
  • [2] Cz. Przybyła, A. Malinger, and K. Mrozik, “The influence of hydro technical structures on the renaturation of water management of Zagórów Polder”, Rocznik Ochrony Środowiska 14, 351‒369, 2012, [in Polish].
  • [3] K. Czoch and K. Kulesza “Environmental protection in the aspect of sustainable socio-economic development of the Dynów Foothill” (editors: J. Krupa, T. Soliński), Związek Gmin Turystycznych Pogórza Dynowskiego, Dynów, p. 209‒217, 2012 [in Polish].
  • [4] Water Law, ustawa z dnia 18 lipca 2001 r.; tekst jednolity Dz.U. 2001 Nr 115 poz. 1229, tekst jednolity: 2010‒10‒11, [in Polish].
  • [5] E. Sieinski and P. Śliwiński, “Guidelines for the execution of tests, measurements, technical condition assessments and investigating safety levels of water damming structures”, Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy, Ośrodek Technicznej Kontroli Zapór, Warszawa-Katowice, 2015 [in Polish].
  • [6] K. Karsznia, “Methods of adjustment and integration of spatial tacheometric traverses in the reference to GPS points and the geoid”, Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, Geodezja i Urządzenia Rolne XXII, Nr 500, Wrocław, 2004 [in Polish].
  • [7] Leica Geosystems AG, Leica MS50/TS50/TM50 User Manual version 2.0, Heerbrugg, Switzerland, 2014.
  • [8] K. Karsznia, “On deformation measurements of timber-concrete structures”, Annals of WULS – Forestry and Wood Technology 95, 62‒73 (2016).
  • [9] J. Zaczek-Peplinska and M.E. Kowalska, “Terrestrial laser scanning in monitoring hydro technical objects”, Journal of Ecological Engineering 17 (4), 120–128 (2016).
  • [10] R. Joeckel, M. Stober, and W. Huep, „Electronic distance and angle measurements and their integration with contemporary positioning procedures“, Herbert Wichmann Verlag, Heidelberg, 2008 (in German).
  • [11] Climate change and climate variability in Poland, Management of Meteorology and Water Management, National Research Institute Poland, Warsaw, 2013.
  • [12] E. Żmudzka, “Contemporary climate changes in Poland”, Acta Agrophysica 13(2), 555‒568 (2009), [in Polish].
  • [13] M. Marosz, R. Wójcik, D. Biernacik, E. Jakusik, M. Pilarski, M. Owczarek, and M. Miętus, “Variability of the climate of Poland since the mid-20th century. The results of the project Climate”, Prace i Studia Geograficzne, T. 47, 51‒66 (2011), [in Polish].
  • [14] R. Wójcik and M. Miętus, “Selected properties of long-term air temperature changes in Poland (1951‒2010)”, Przegląd Geograficzny 86 (3), 339‒364, 2014, [in Polish].
  • [15] P. Marcinkowski, M. Piniewski, I. Kardel, M. Szcześniak, R. Benestad, R. Srinivasan, S. Ignar, and T. Okruszko, “Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland”, Water 9 (3), 1‒23 (2017).
  • [16] Z. Bielec-Bąkowska and E. Łupikasza, “Long-term variability of extreme thermal conditions in the southern part of Małopolska in the second half of the 20th century”, in: Climate fluctuations in different spatial and temporal scales (editors: K. Piotrowicz, R. Twardosz), Kraków, p. 287‒295, 2007 [in Polish].
  • [17] Z. Marzec, “The impact of the Roznov reservoir on the local climate”, Prace Państwowego Instytutu Hydrologiczno -Meteorologicznego, p.101, 1971 [in Polish].
  • [18] J. Miczyński, Z. Zuśka, U. Jabłońska-Korta, and T. Jurkiewicz “An attempt to assess a local climate change as the result of a water reservoir impact on the example of fog occurrences in Czorsztyn, Poland”, in: Pieniny Mts.-Dam-Changes, Monografie Pienińskie 2, p. 123–129, 2010; [in Polish].
  • [19] Project “Climate”: The influence of a climate on an environment, economy and society, coordinator: Miętus M., IMGW, Warszawa-Gdynia-Kraków, 14.01.2011, [in Polish].
  • [20] M. Jaboyedoff, T. Oppikofer, A. Abbelan, M-H. Derron, A. Loye, R. Metzger, and A. Pedrazzini, “Use of LiDAR in landslide investigations: a review”. Natural Hazards 61 (1), 5–28, DOI: 10.1007/s11069‒010‒9634‒2, (2012).
  • [21] D. Milan, “Terrestrial laser scan-derived topographic and roughness data for hydraulic modeling of gravel-bed rivers”. Chapter 9 in Laser Scanning for the Environmental Sciences (Eds. G.L. Heritage and A.R.G. Large).Wiley-Blackwell, p. 133 -146, 2009.
  • [22] G. Alberti, F. Boscutti, F. Pirotti, C. Bertacco, G. De Simon, M. Sigura, F. Cazorzi, and P. Bonfanti, “A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study”, iForest-Biogeosciences and Forestry 6(3), 156–168, DOI: 10.3832/ifor0876‒006 (2013).
  • [23] V. Valzano, A. Bandiera, and J-A.Beraldin, Realistic Representations of Cultural Heritage Sites and Objects Through Laser Scanner Information, National Research Council of Canada, Ottawa. pages 1–12, 2005.
  • [24] S. Crutchley, “Using LiDAR in archaeological contexts: the English heritage experience and lessons learned”, Laser Scanning for the Environmental Sciences (editors: G.L. Heritage, A.R.G. Large), Wiley Blackwell, 180–200, 2009.
  • [25] M. Pętlicki and C. Kinnard, “Calving of Fuerza Aérea Glacier (Greenwich Island, Antarctica) observed with terrestrial laser scanning and continuous video monitoring”, Journal of Glaciology 62(235), 835–846, DOI: 10.1017/jog.2016.72, (2016).
  • [26] S. Pascucci, C. Bassani, A. Palombo, M. Poscolieri, and R. Cavalli, “Road asphalt pavements analyzed by airborne thermal remote sensing: Preliminary results of the Venice highway”. Sensors 8(2), 1278‒1296, (2008).
  • [27] J. Zaczek-Peplinska, K. Osińska-Skotak, D. Wujanz and M. Kołakowska, “Analysis of the possibility for using the results of terrestrial laser scanning (TLS) measurements and classification algorithms of images for the engineering structure surface condition assessment”, Proceedings of the first Vertical Geology Conference, 227–232 (2014).
  • [28] D.J. Titman, “Applications of thermography in non-destructive testing of structures”, NDT & eInternational 34(2), 149‒154 (2001).
  • [29] P.A.Hernández, S. Calvari, A. Ramos, N.M. Pérez, A. Márquez, R. Quevedo, J. Barrancosa, E. Padróna, G.D. Padillaa, D. Lópezb, A.R. Santanab, G.V. Meliána, S. Dionis, F. Rodríguez, D. Calvo, and A.R. Santana, “Magma emission rates from shallow submarine eruptions using airborne thermal imaging”, Remote Sensing of Environment 154, 219‒225 (2014).
  • [30] H. Saaroni, E. Ben-Dor, A. Bitan, and O. Potchter, “Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel”, Landscape and Urban Planning 48(1), 1‒18 (2000).
  • [31] M. Rucka and K. Wilde, “Ultrasound monitoring for evaluation of damage in reinforced concrete”, Bull. Pol. Ac.: Tech. 63(1), 65‒75, (2015), doi:10.1515/bpasts-2015‒0008.
  • [32] D. Lichti and S.J. Gordon “Error propagation in directly georeferenced terrestrial laser scanner point clouds for cultural heritage recording”, in: FIG (Editor), FIG Working Week, Athens, Greece, 2004.
  • [33] J. Zaczek-Peplinska and M. Kowalska, ”Terrestrial laser scanning in the monitoring of anthropogenic objects”, manuscript in print: Geodesy and Cartography, 2017, ISSN:2080‒6736.
  • [34] M. Kowalska and J. Zaczek-Peplinska, “Roughness parameters as the elements of surface condition and deformation assessment based on the results of TLS scanning”. Annals of Warsaw University of Life Sciences-SGGW Land Reclamation 49 (1), 29‒41. http://doi.org/10.1515/sggw-2017‒0003, (2017).
  • [35] P. Popielski, J. Zaczek-Peplinska, E. Bartnik, A. Kasprzak, and B. Smoliński, “Contemporary techniques of data acquisition for preparation of numerical models of hydro technical structures”, Czasopismo Techniczne 2, 113–128 [in Polish], http //doi.org/10.4467/2353737XCT.15.231.4617
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c6fb4ba-245d-4b9a-8037-35d54d167138
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.