PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kierunki rozwoju farb pęczniejących do zabezpieczania konstrukcji stalowych i nowe związane z nimi oczekiwania

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Trends in the development of intumescent paints for the protection of steel structures and new related with them expectations
Języki publikacji
PL
Abstrakty
PL
Opisano skład i mechanizm działania powłok pęczniejących, a także wpływ warunków atmosferycznych na zdolność powłok do pęcznienia oraz metody poprawy ich właściwości ogniochronnych i antykorozyjnych. Współczesne powłoki pęczniejące zapewniają skuteczną ochronę konstrukcji stalowych w przypadku pożaru, ale nadal wykazują ograniczenia pod względem odporności na warunki zewnętrzne. Pod wpływem czynników atmosferycznych zmniejszają się ogniochronne właściwości powłok na skutek wymywania się składników powodujących utworzenie się spęcznionej warstwy izolacyjnej. Rozwój w dziedzinie farb pęczniejących obejmuje więc nie tylko poprawę izolacyjności i stabilności warstwy zwęglonej, ale również poprawę właściwości ochronnych powłok.
EN
The composition and methods of protection of intumescent coatings are described, as well as the influence of atmospheric conditions on the swelling ability of the coatings and methods of improving their fire-retardant and anticorrosive properties. Modern intumescent coatings provide effective protection for steel structures during a fire, but still have limitations in terms of resistance to external conditions. Under the influence of atmospheric conditions, the fire-retardant properties of the coatings decrease as a result of the washing out of components causing the formation of a swollen char layer. Development in the field of intumescent paints, therefore, includes not only the improvement of the insulation and stability of the char layer, but also the improvement of the protective properties of coatings.
Rocznik
Tom
Strony
212--220
Opis fizyczny
Bibliogr. 62 poz., tab.
Twórcy
autor
  • Sieć Badawcza Łukasiewicz – Instytut Inżynierii Materiałów Polimerowych i Barwników, Centrum Farb i Tworzyw, Gliwice
  • Instytut Badawczy Dróg i Mostów, Warszawa
Bibliografia
  • [1] Ravindra G. Puri, A. S. Khanna. 2017. “Intumescent coatings: A review on recent progress”. Journal of Coatings Technology and Research 14 : 1–20.
  • [2] Hongfei Li, Zhongwu Hua, Sheng Zhanga, Xiaoyu Gua, Huajin Wang, Peng Jiang, Qian Zhao. 2015. „Effects of Titanium Dioxide on the Flammability and Char Formation of Water-Based Coatings Containing Intumescent Flame Retardants”. Progress in Organic Coatings 78 : 318–324.
  • [3] Duquesne Sophie, Bachelet Pierre, Bellayer Severine., Bourbigot Serge, Mertens William. 2013. “Influence of Inorganic Fillers on the Fire Protection of Intumescent Coatings”. Journal of Fire Sciences 31 : 258–275.
  • [4] Jenny Alongi, Zhidong Hanb, Serge Bourbigot. 2015. “Intumescence: Tradition versus novelty. A comprehensive review”. Progress in Polymer Sciences 51 : 28–73.
  • [5] Thirumal Mariappan. 2016. “Recent developments of intumescent fire protection coatings for structural steel: A review”. Journal of Fire Sciences 34 : 120–163.
  • [6] [Małgorzata Zubielewicz. 2009. „Powłoki pęczniejące do przeciwogniowego zabezpieczania konstrukcji stalowych”. Ochrona przed Korozją 52 : 234–237.
  • [7] Rodrigo B. R.S. Oliveira, A. L. Moreno Junior, L. C. M. Vieira. 2017. “Intumescent paint as fire protection coating”. Revista IBRACON de Estruturas e Materials 10 : 220–243.
  • [8] “On-site and off-site application of intumescent fire and corrosion protection coatings for steel structures. Guidance on selection, specifications, and use, prepared for Institute of Corrosion”. ICorr/CED/CT06 Issue 1, November 2017.
  • [9] Jenny Alongi, Zhidong Hanb, Serge Bourbigot. 2015. “Intumescence: Tradition versus novelty. A comprehensive review”. Progress in Polymer Science 51 : 28–73.
  • [10] Bourbigot Serge, Le Bras M, Breant P, Tremillon JM, Delobel R.1996. “Zeolites: new synergistic agents for intumescent fire retardant thermoplastic formulations – criteria for the choice of the zeolite”. Fire Materials 20 : 145–154.
  • [11] Bourbigot Serge, Samyn F, Turf T, Duquesne S. 2010. “Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants”. Polymer Degradation and Stability 95 : 320–326.
  • [12] Vannier A, Duquesne S, Bourbigot S, Castrovinci A, Camino G, Delobel R. 2008. “The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate)”. Polymer Degradation and Stability 93 : 818–826.
  • [13] Fontaine G., Bourbigot S., Duquesne S. 2008. “Neutralized flame retardant phosphorus agent: facile synthesis, reaction to fire in PP and synergy with zinc borate”. Polymer Degradation and Stability 93 : 68–76.
  • [14] Anna P., Marosi G, Csontos I, Bourbigot S, Le Bras M, Delobel R. 2001. “Influence of modified rheology on the efficiency of intumescent flame retardant systems”. Polymer Degradation and Stability 74 : 423–426.
  • [15] Qian Y, Wei P, Jiang P, Zhao X, Yu H. 2011. “Synthesis of a novel hybrid synergistic flame retardant and its application in PP/IFR”. Polymer Degradation and Stability 96 : 1134–1140.
  • [16] Liu Y, Wang J.S., Deng C.L., Wang D.Y, Song YP, Wang Y.Z. 2010. “The synergistic flame-retardant effect of O-MMT on the intumescent flame-retardant PP/CA/APP systems”. Polymers for Advanced Technology 21 : 789–796.
  • [17] Ren Q., Wan C., Zhang Y., Li J. 2011. „An investigation into synergistic effects of rare earth oxides on intumescent flame retardancy of polypropylene/ poly (octylene-co-ethylene) blends. Polymers for Advanced Technology 22 : 1414–1421.
  • [18] Lin M., Li B., Li Q., Li S., Zhang S. 2011. “Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame- -retardant thermoplastic polyurethanes”. Journal of Applied Polymer Science 121 : 1951–1960.
  • [19] Wang X., Wu L., Li J. 2011. „A study on the performance of intumescent flame- retarded polypropylene with nano-ZrO2”. Journal of Fire Sciences 29 : 227–242.
  • [20] Liu Y., Zhao J., Deng C.L., Chen L., Wang D.Y., Wang Y.Z. 2011. „Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system”. Industrial and Engineering Chemistry Research 50 : 2047–2054.
  • [21] Bourbigot S, Duquesne S, Fontaine G, Bellayer S, Turf T, Samyn F. 2008. „Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants”. Molecular Crystals and Liquid Crystals 486 : 325–339 (1367–1381).
  • [22] Du B, Fang Z. 2011. “Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene”. Polymer Degradation and Stability 96 : 1725–1731.
  • [23] Dahm D.B. 1996. “Reformulation of fire retardant coatings”. Progress in Organic Coatings 29 : 61–71.
  • [24] Yakovlev G., Kodolov V. 2000. “Intumescent fireproof coating based on water glass”. International Journal of Polymeric Materials 41 : 107–115.
  • [25] “Smart fire-retardant coatings based on intumescent nanocomposites”. Reporting HEFEST Grant agreement ID: 222263.
  • [26] Yinchun Fang, Xinhua Liua, Xuchen Tao, Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate. 2019. Progress in Organic Coatings 134 : 162–168.
  • [27] Rao T.N., Hussain I., Eun Lee J.E., Kumar A., Koo B.H. 2019. “Enhanced Thermal Properties of Zirconia Nanoparticles and Chitosan-Based Intumescent Flame Retardant Coatings”. Applied Science 9 : 3464.
  • [28] Rao T.N., Hussain I., Koo B.H. 2020. “Enhanced thermal properties of silica nanoparticles and chitosan bio-based intumescent flame retardant Polyurethane coatings”. Materials Today: Proceedings 27 : 369–375.
  • [29] Ying Dong, Guojian Wang, Jiayun Yang. 2014. “Influences of silicone emulsion on fire protection of waterborne intumescent fire-resistive coating”, Journal of Coatings Technology and Research 11 : 231–237.
  • [30] Gardelle B., Duquesne S., Rerat V., Bourbigot S. 2013. “Thermal Degradation and Fire Performance of Intumescent Silicone-Based Coatings”. Polymers for Advanced Technology , 24 : 62–69.
  • [31] Gardelle B., Duquesn, S., Vandereecken P., Bourbigot S. 2013. “Characterization of the carbonization process of expandable graphite/silicone formulations in a simulated fire”. Polymer Degradation and Stability 98 : 1052–1063.
  • [32] Maria Zielecka, Anna Rabajczyk, Krzysztof Cygańczuk, Łukasz Pastuszka, Leszek Jurecki. 2020. „Silicone Resin-Based Intumescent Paints”. Materials 13 : 4785.
  • [33] Xiaochun Hua, Xiaojun Zhu, Zhiqiang Sun. 2020. “Fireproof performance of the intumescent fire retardant coatings with layered double hydroxides additives”. Construction and Building Materials 256 : 119445.
  • [34] M. Zia-ul-Mustafa, Faiz Ahmada, Sami Ullah, Norlaili Amir, Qandeel Fatima Gillani. 2017. “Thermal and pyrolysis analysis of minerals reinforced intumescentfire retardant coating”. Progress in Organic Coatings 102 : 201–216.
  • [35] Guojian Wang, Jiayun Yang. 2011. “ Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure”. Progress in Organic Coatings 70 : 150–156.
  • [36] J. F. Marques, A. F. Baldissera, M. R. Silveira, A. C. Dornelles, C. A. Ferreira. 2021. Performance of phosphorylated tannin-based intumescent coatings in passive fire protection. Journal of Coatings Technology and Research 18 : 899–910.
  • [37] Ming Chian Yew, N.H. Ramli Sulong. 2012. “Fire-resistive performance of intumescent flame-retardant coatings for steel”. Materials and Design 34 : 719–724.
  • [38] A. Fream, C. Baude, M. Secher. 2018. “New Water-based Binder for Durable Thin Film Intumescent Coatings”. American Coatings CONFERENCE, April 9–11, Indianapolis, IN.CoatingsTech, Vol. 14, No. 7 July 2018.
  • [39] Sami Ullah, Faiz Ahmad, A.M. Shariff, M. Rafi Raza, Patrick J. Masset. 2017. “The role of multi-wall carbon nanotubes in char strength of epoxybased intumescent fire retardant coating”. Journal of Analytical and Applied Pyrolysis 124 : 149–160.
  • [40] Sherif Elbasuney, Hosam E. Mostafa. 2015. “Synthesis and surface modification of nanophosphorous-based flame retardant agent by continuous flow hydrothermal synthesis”. Particuology 22 : 82–88.
  • [41] Andrey Ustinov, Olga Zybina, Leonid Tanklevsky, Vasily Lebedev, AndreyAndreev. 2018. “Intumescent coatings with improved properties for high-rise construction intumescent coatings with improved properties for high-rise construction”. E3S Web of Conferences 33, 02039.
  • [42] Zhenyu Wang, Enhou Ha, Wei Ke. 2006. An investigation into fire protection and water resistance of intumescent nano-coatings, Surface and Coatings Technology 201 : 1528–1535.
  • [43] Henri Vahabi, Mohammad Reza Saeb, Krzysztof Formela, Jose-Marie Lopez Cuesta. 2018. “Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant”. Progress in Organic Coatings 119 : 8–12.
  • [44] Hammad-Aziz, Faiz-Ahmad, M-Zia-Ul-Mustafa. 2014. “Nano Filler Reinforced Intumescent Fire Retardant Coating for Protection of Structural Steel”. 2014. Proceedings of the International Civil and Infrastructure Engineering Conference.
  • [45] Hu J., Li X., Gao J., Zhao Q. 2009. “UV aging characterization of epoxy varnish coated steel upon exposure to artificial weathering environment”. Materials & Design 30 : 1542–1547.
  • [46] W. C. Puspitasari, Faiz Ahmad, Sami Ullah, M. Rafi Raza, P. Hussain Yusoff, Yasmin Azmi. 2018. “The Study of Corrosion Behaviour of Intumescent Fire Retardant Coating with Structural Steel Substrate”. International Journal of Electrochemical Science 13 : 9916 – 9930.
  • [47] Birgit Ostman, Angelika Voss, Andrew Hughes, Per Jostein Hovde, Ondrej Grexa. 2001. “Durability of fire retardant treated wood products at humid and exterior conditions review of literature”. Fire Materials 25 : 95–104.
  • [48] Zhenyu Wang, Enhou Han, Wei Ke. 2007. “Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings”. Corrosion Science 49 : 2237–2253.
  • [49] R. Maciulaitis, M. Grigonis, J. Malaiskiene. 2018. “The impact of the aging of intumescent fire protective coatings on fire resistance”. Fire Safety Journal 98 : 15–23.
  • [50] T.A. Roberts, L.C. Shirvill, K. Waterton, I. Buckland. 2010. “Fire resistance of passive fire protection coatings after long-term weathering”. Process Safety and Environmental Protection 88 : 1–19.
  • [51] A. Bilotta, D. Silva, E. Nigro. 2016. “Tests on intumescent paints fir fire protection of existing steel structures”. Construction and Building Materials 121 : 410–422.
  • [52] M. Jimenez, S. Bellayer, B. Revel, S. Duquesne, S. Bourbigot. 2013. “Comprehensive Study of the Influence of Different Aging Scenarios on the Fire Protective Behavior of an Epoxy Based Intumescent Coating”. Industrial & Engineering Chemistry Research 52 : 729–743.
  • [53] Ji Wang, Wen-hua Song, Miao Zhang, Zhen Chen. 2014. „Experimental Study of the Acid Corrosion Effects on an Intumescent Coating for Steel Elements”. Industrial & Engineering Chemistry Research 53 : 11249–11258.
  • [54] Sami Ullah, Faiz Ahmad, A.M. Shariff, M.A. Bustam. 2014. “Synergistic effects of kaolin clay on intumescent fire retardant coating composition for fire protection of structural steel substrate, Polymer Degradation and Stability 2014.08.017.
  • [55] Ji Wang. 2016. “The protective effects and aging process of the topcoat of intumescent fire-retardant coatings applied to steel structures”. Journal of Coatings Technology and Research 13 : 143–157.
  • [56] Wang G., Yang J. 2011. “Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure”. Progress in Organic Coatings 70 : 150–156
  • [57] Kelvin K. Shen. 2014. “Review of Recent Advances on the Use of Boron-based Flame Retardants” in Polymer Green Flame Retardants, Elsevier, 367–387.
  • [58] Guojian Wang, Jiayun Yang. 2010. “Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure”. Surface & Coatings Technology 204 : 1186–1192.
  • [59] Andreza P. Cardoso, Stephanie C. de Sa, Carlos H. M. Beraldo, Gelsa E. N. Hidalgo, Carlos A. Ferreira. 2020. „Intumescent coatings using epoxy, alkyd, acrylic, silicone, and silicone–epoxy hybrid resins for steel fire protection”. Journal of Coatings technology and Researches 17:1471–1488.
  • [60] UL 2431:2019 Standard for Safety – Durability of Fire Resistive Coatings and Materials.
  • [61] PN-EN 16623:2015-03 Farby i lakiery – Powłoki reaktywne do ochrony podłoży metalowych przed ogniem – Definicje, wymagania, właściwości i znakowanie.
  • [62] PN-EN ISO 12944-6:2018-03 Farby i lakiery – Ochrona przed korozją konstrukcji stalowych za pomocą ochronnych systemów malarskich – Część 6: Laboratoryjne metody badań właściwości.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c6d91f8-f74d-4569-8548-317b77653dca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.