PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FEM modelling of internal stresses in advanced PVD coatings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The general topic of this paper is the computer simulation with use of finite element method (FEM) for determining the internal stresses of gradient and single -layer coatings (Ti,Al)N and Ti(C,N) deposited on the sintered tool materials, including cemented carbides, cermets and Al2O3+TiC type oxide tool ceramics by cathodic arc evaporation CAE-PVD method. Design/methodology/approach: Internal stresses’ models were performed with use of finite element method in ANSYS environment. The experimental values of stresses were were calculated using the X-ray sin2^ technique. The computer simulation results were compared with the experimental results. Microhardness and adhesion as well as wear range were measured to investigate the influence of stress distribution on the mechanical and functional properties of coatings. Findings: A more advantageous distribution of stresses in gradient coatings than in respective single-layer coatings yields better mechanical properties, and, in particular, the distribution of stresses on the coating surface has the influence on microhardness, and the distribution of stresses in the contact area between the coating and substrate has the influence on the adhesion of coatings. Practical implications: Deposition of hard, thin, gradient coatings on materials surface by PVD method features one of the most intensely developed directions of improvement of the working properties of materials. Presently the computer simulation is very popular and it is based on the finite element method, which allows to better understand the interdependence between parameters of process and choosing optimal solution. Originality/value: Nowadays the computer simulation is very popular and it is based on the finite element method, which allows to better understand the interdependence between parameters of process and choosing optimal solution. Influence of gradient structure of coatings on the mechanical and functional properties were investigated with use of finite element method.
Słowa kluczowe
Rocznik
Strony
259--268
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] K. Lenik, D. Wójcicka-Migasiuk, FEM applications to the analysis of passive solar wall elements, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 333-340.
  • [2] A.V. Benin, A.S. Semenov, S.G. Semenov, Modelling of fracture process in concrete reinforced structures under steel corrosion, Journal of Achievements in Materials and Manufacturing Engineering 39/2 (2010) 168-175.
  • [3] J. Okrajni, W. Essler, Computer models of steam pipeline components in the evaluation of their local strength, Journal of Achievements in Materials and Manufacturing Engineering 39/1 (2010) 71-78.
  • [4] W. Kajzer, A. Kajzer, J. Marciniak, FEM analysis of expandable intramedullary nails in healthy and osteoporotic femur, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 563-570.
  • [5] H.C. Lee, J.S. Choi, K.H. Jung, Y.T. Im, Application of element deletion method for numerical analyses of cracking, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 154-161.
  • [6] C.L. Chang, S.H. Yang, Finite element simulation of wheel impact test Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 167-170.
  • [7] M. Antonov, I. Hussainova, F. Sergejev, P. Kulu, A. Gregor, Assessment of gradient and nanogradient PVD coatings behaviour under erosive, abrasive and impact wear conditions, Wear 267 (2009) 898-906.
  • [8] M. Arndt, T. Kacsich, Performance of new AlTiN coatings in dry and high speed cutting, Surface and Coatings Technology 163-164 (2003) 674-680.
  • [9] Y.Y. Chang, D.Y. Wang, Characterization of nanocrystalline AlTiN coatings synthesized by a cathodic-arc deposition process, Surface and Coatings Technology 201 (2007) 6699-6701.
  • [10] G.E. D’Errico, R. Calzavarini, B. Vicenzi, Influences of PVD coatings on cermet tool life in continuous and interrupted turning, Journal of Materials Processing Technology 78 (1998) 53-58.
  • [11] L.A. Dobrzański, L.W. Żukowska, W. Kwaśny, J. Mikuła, K. Gołombek, Ti(C,N) and (Ti,Al)N hard wear resistant coatings, Journal of Achievements in Materials and Manufacturing Engineering 42/2 (2010) 93-103.
  • [12] J. Gu, G. Barber, S. Tung, R.J. Gu, Tool life and wear mechanism of uncoated and coated milling inserts, Wear 225-229 (1999) 273-284.
  • [13] Li Chen, S.Q. Wang, Yong Du, Jia Li, Microstructure and mechanical properties of gradient Ti(C,N) and TiN/Ti(C, N) multilayer PVD coatings, Materials Science and Engineering A 478 (2008) 336-339.
  • [14] K. Lukaszkowicz, L.A. Dobrzański, Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5-1 steel substrate, Journal of materials Science 43 (2008) 3400-3407.
  • [15] R. Manaila, A. Devenyi, D. Biro, L. David, P.B. Barna, A. Kovacs, Multilayer TiAlN coatings with composition gradient, Surface and Coatings Technology, 151-152 (2002) 21-25.
  • [16] G. Matula, Study on steel matrix composites with (Ti,Al)N gradient PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 79-86.
  • [17] S. PalDey, S.C. Deevi, Properties of single layer and gradient (Ti,Al)N coatings, Materials Science and Engineering A 361 (2003) 1-8.
  • [18] A. Perry, J.A. Sue, P.J. Martin, Practical measurement of the residual stress in coatings, Surface and coatings Technology 81 (1996)17-28.
  • [19] X. Qiao, Y. Hou, Y. Wu, J. Chen, Study on functionally gradient coatings of Ti-Al-N, Surface and Coatings Technology 131 (2000) 462-464.
  • [20] A. Śliwa, J. Mikuła, K. Gołombek, L.A. Dobrzański, FEM modelling of internal stresses in PVD coated FGM, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 71-78.
  • [21] V. Volvoda, Structure of thin films of titanium nitride, Journal of Alloys and Compounds 219 (1995) 83-87.
  • [22] L.A. Dobrzański, K. Lukaszkowicz, A. Zarychta, L. Cunha, Corossion resistance of multilayer coatings deposited by PVD technology onto the brass substrate, Journal of Materials and Processing Technology 164 (2005) 816-821.
  • [23] L.A. Dobrzański, K. Lukaszkowicz, D. Pakuła, J. Mikuła, Corossion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques, Archives of Materials Science and Engineering 28 (2007) 12-18.
  • [24] A Śliwa, LA Dobrzański, W Kwaśny, W Sitek, Finite Element Method application for modeling of PVD coatings properties, Journal of Achievements in Materials and Manufacturing Engineering, 27/2 (2008)171-175
  • [25] L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools Archives of Metallurgy and Materials 55/1 (2010) 187-193.
  • [26] L.A. Dobrzański, A. Śliwa, W. Sitek, Finite element method application for modeling of PVD coatings properties Surface Engineering - Proceedings of the 5th International Surface Engineering Conference 2006, 26-29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c619df9-c533-4490-9ff7-b487855101ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.