PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of low-dose irradiation of dry fruits by termoluminescence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to investigate whether it is possible to detect low-dose irradiation in dried fruits using the thermoluminescence (TL) method. Selected dried fruits: strawberries, cherries, black currants, two types of raisins, mulberries, apricots, fi gs, dates and plums were irradiated with doses of 0.1 kGy, 0.3 kGy and 0.5 kGy.
Czasopismo
Rocznik
Strony
159--167
Opis fizyczny
Bibliogr. 81 poz., rys.
Twórcy
autor
  • Institute of Nuclear Chemistry and Technology Laboratory for Detection of Irradiated Food Dorodna 16 St., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Laboratory for Detection of Irradiated Food Dorodna 16 St., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Laboratory for Detection of Irradiated Food Dorodna 16 St., 03-195 Warsaw, Poland
Bibliografia
  • 1. Vantage Market Research & Consultancy Services. (2022). Dry Fruits Market – Global Industry Assessment & Forecast. Retrieved June 15, 2023, from https://www.vantagemarketresearch.com/industry-report/dry-fruits-market-1559.
  • 2. Research and Markets. (2023, February). Dried Fruits Global Market Report 2023. Retrieved June 15, 2023, from https://www.researchandmarkets.com/report/dried-fruit?gclid=EAIaIQobChMIx6bwvMrE_wIVBwd7Ch3YfAjVEAAYASAAEgJLsfD_BwE.
  • 3. Kolek, Z. (2011). The use of ionizing radiation to preserve food. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, 874, 45–57. https://r.uek.krakow.pl/jspui/handle/123456789/232.
  • 4. Migdał, W., Gryczka, U., Bertrandt, J., Nowicki, T., & Pytlak, R. (2014). Radiation methods in decision support system for food safety. Nukleonika, 59(4), 161–168. DOI: 10.2478/nuka-2014-0022.
  • 5. Guzik, G. P., & Michalik, J. (2021). European intercomparison studies as a tool for perfecting irradiated food detection methods. Nukleonika, 66(3), 91–97. DOI: 10.2478/nuka-2021-0013.
  • 6. US Food and Drug Administration. (2018, February). Food irradiation: What you need to know. Retrieved June 15, 2023, from https://fda.gov/food/buy-storeserve-safe-food/food-irradiation-what-you-need-know.
  • 7. FAO/WHO. (1984). Codex general standard for irradiated foods and recommended international code of practice for the operation of radiation facilities used for the treatment of foods. In Codex Alimentarius (Vol. XV). Rome: Codex Alimentarius Commission.
  • 8. World Health Organization. (1988). Food irradiation: A technique for preserving and improving the safety of food. Geneva, Switzerland: WHO.
  • 9. World Health Organization. (1999). High dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. Geneva, Switzerland: WHO.(WHO Technical Report Series 890).
  • 10. FAO/WHO. (2005). Fruit and vegetable for health. Report of a Joint FAO/WHO Workshop, Kobe, Japan, 2004. Kobe, Japan: World Health Organization and Food and Agriculture Organization of the United Nations.
  • 11. European Commission. (1999). Directive 1999/2/EC of the European Parliament and of the Council on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionizing radiation. EU.
  • 12. European Commission. (1999). Directive 1999/3/EC of the European Parliament and of the Council on the establishment of a Community list of foods and food ingredients treated with ionizing radiation. EU.
  • 13. Cruz-Zaragoza, E., Marcazzó, J., & Chernov, V. (2012). Photo- and thermally stimulated luminescence of polyminerals extracted from herbs and spices. Radiat. Phys. Chem., 81(8), 1227–1231. DOI: 10.1016/j.radphyschem.2012.01.024.
  • 14. European Food Safety Authority. (2011). Scientific opinion on the chemical safety of irradiation of food. EFSA Journal, 9(10), 23–93. DOI: 10.2903/j.efsa.2011.1930.
  • 15. Arvanitoyannis, I. S. (2010). Irradiation of food commodities: techniques, applications, detection, legislation, safety and consumer opinion. London, UK: Academic Press.
  • 16. Piniero, M., & Diaz, L. B. (2007). Improving the safety and quality of fresh fruit and vegetables (FFV): A practical approach. Acta Hortic., 741, 19–24. DOI: 10.17660/ActaHortic.2007.741.1.
  • 17. Kume, T., Furuta, M., Todoriki, S., Uenoyama, N., & Kobayashi, Y. (2009). Status of food irradiation in the world. Radiat. Phys. Chem., 78(3), 222–226. DOI: 10.1016/j.radphyschem.2008.09.009.
  • 18. Kume, T., & Todoriki, S. (2013). Food irradiation in Asia, the European Union, and the United States: A status update. Radioisotopes, 62, 291–299. DOI: 10.3769/radioisotopes.62.291.
  • 19. Roberts, P. B. (2014). Food irradiation is safe: Half a century of studies. Radiat. Phys. Chem., 105, 78–82. DOI: 10.1016/j.radphyschem.2014.05.016.
  • 20. European Food Safety Authority. (2011). Scientific opinion on the chemical safety of irradiation of food. EFSA Journal, 9(10), 23–93. DOI: 10.2903/j.efsa.2011.1930.
  • 21. Ihsanullah, I., & Rashid, A. (2017). Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and Pacific Region and a comparison with advanced countries. Food Control, 72, 345–359. DOI: 10.1016/j.foodcont.2016.03.011.
  • 22. European Committee for Standardization. (2001).Foodstuffs – Thermoluminescence detection of irradiated food from which silicate minerals can be isolated. EN 1788:2001. EU, Brussels, Belgium.
  • 23. Sanderson, D. C. W., Schreiber, G. A., & Carmichael, L. A. (1991). A European trial of TL detection of irradiated herbs and spices. (Scottish Universities Research Reactor Center Report to BCR).
  • 24. Schreiber, G. A., Wagner, U., Leffke, A., Helle, N., Ammon, J., Buchholtz, H. -V., Delincée, H., Estendorfer, S., Fuchs, K., von Grabowski, H. -U., Kruspe, W., Mainczyk, K., Münz, H., Nootenboom, H., Schleich, C., Vreden, N., Wiezorek, C. & Bögl, K. W. (1993). Thermoluminescence analysis to detect irradiated spices, herbs and spice- and herbs mixtures – an intercomparison study. Instituts für Sozialmedizin und Epidemiologie des Bundesgesundheitsamtes. Berlin: German Federal Health Office (Bundesgesundheitsamt). (SozEp-Heft 2/1993).
  • 25. Schreiber, G. A., Helle, N., & Bögl, K. W. (1995). An inter-laboratory trial on the identification of irradiated spices, herbs and spice-herbs mixtures by thermoluminescence analysis. J. AOAC Int., 78(1), 88–93. DOI: 10.1093/jaoac/78.1.88.
  • 26. Sanderson, D. C. W., Slater, C., & Cairns, K. J. (1989). Detection of irradiated food. Nature, 340, 23–24. DOI: 10.1038/340023b0.
  • 27. Sanderson, D. C. W., Slater, C., & Cairns, K. J. (1989). Thermoluminescence of foods: Origins and implications for detecting irradiation. Radiat. Phys. Chem., 34(6), 915–924. DOI: 10.1016/1359-0197(89)90329-9.
  • 28. Sanderson, D. C. W. (1990). Luminescence detection of irradiated foods. In D. E. Johnston & M. H. Stevenson (Eds.), Food irradiation and the chemist (pp. 25–56). Cambridge: The Royal Society of Chemistry.
  • 29. Autio, T., & Pinnioja, S. (1990). Identification of irradiated foods by the thermoluminescence of mineral Detection of low-dose irradiation of dry fruits by termoluminescenc 165 contamination. Z. Lebensm. Unters. Forsch., 191(3), 177–180. DOI: 10.1007/BF01197616.
  • 30. Göksu, H. Y., Regulla, D. F., Hietel, B., & Popp, G. (1990). Thermoluminescent dust for identification of irradiated spices. Radiat. Prot. Dosim., 34(1/4), 319–322. DOI: 10.1093/oxfordjournals.rpd.a080912.
  • 31. Delincée, H. (1992). Detection methods for irradiated food. In Proceedings Symposium “Irradiation for the food sector”, 13 May 1992 (pp. 24–60). SaintHyacinthe, Quebec, Canada: Agriculture Canada.
  • 32. Autio, T., & Pinnioja, S. (1993). Identification of irradiated foods by thermoluminescence of contaminating minerals. In M. Leonardi, J. J. Raffi& J. Belliardo (Eds.), Recent advances on detection of irradiated food (pp. 183–191). Luxembourg: Commission of the European Communities. (EUR-14315).
  • 33. Pinnioja, S., Autio, T., Niemi, E., & Pensala, O. (1993). Import control of irradiated foods by the thermoluminescence method. Z. Lebensm. Unters. Forsch., 196(2), 111–115. DOI: 10.1007/bf01185568.
  • 34. Pinnioja, S. (1993). Suitability of the thermoluminescence method for detection of irradiated foods. Radiat. Phys. Chem., 42(1/3), 397–400. DOI: 10.10.1016/0969-806X(93)90274-X.
  • 35. Schreiber, G. A., Ziegelmann, B., Quitzsch, G., Helle, N., & Bögl, K. W. (1993). Luminescence techniques to identify the treatment of foods by ionizing radiation. Food Structure, 12(4), 385–396. DOI: 1046-705X/93$5.00+0.00.
  • 36. Lozano, I. B., Roman-Lopez, J., Tenopala, J. E., PiñaGonzález, H., Guzman-Castañeda, J. I., & Diaz-Gongora, J. A. I. (2023). Thermoluminescence properties and identification of irradiated cocoa beans during long-term storage. Appl. Radiat. Isot., 191, 110532. DOI: 10.1016/j.apradiso.2022.110532.
  • 37. Calderón, T., Rendell, H. M., Beneitez, P., Townsend, P. D., Millan, A., & Wood, R. (1994). Thermoluminescence spectra of inorganic dust from irradiated herbs and spices. J. Food Sci., 59(5), 1070–1071. DOI: 10.1111/j.1365-2621.1994.tb08192.x.
  • 38. Ahn, J. -J., Akram, K., Lee, J., Kim, K. -S., & Kwon, J. -H. (2012). Identification of a gamma-irradiated ingredient (garlic powder) in Korean barbeque bauce by thermoluminescence analysis. J. Food Sci., 77(4), C476–C480. DOI: 10.1111/j.1750-3841.2011.02614.x.
  • 39. Kim, B. -K., Akram, K., Kim, C. -T., Kang, N. -R., Lee, J. -W., Ryang, J. -H., & Kwon, J. -H. (2012) Identification of low amount of irradiated spices (red pepper, garlic, ginger powder) with luminescence analysis. Radiat. Phys. Chem., 81(8), 1220–1223. DOI: 10.1016/j.radphyschem.2012.01.023.
  • 40. Kim, B. -K., Kim, C. -T., Park, S. H., Lee, J. -E., Jeong, H. -S., Kim, C. -Y., Lee, J. -K., Yu, M. -A., & Kwon, J. -H. (2015). Application of thermo-luminescence (TL) method for the identification of food mixtures containing irradiated ingredients. Food Anal. Methods, 8, 718–727. DOI: 10.1007/s12161-014-9928-1.
  • 41. Karampiperi, M., Theologitis, S., & Kazakis, N. A. (2022). Thermoluminescence characterization of minerals extracted from dried oregano for retrospective and/or sterilization dosimetry. Radiat. Meas., 158, 106850. DOI: 10.1016/j.radmeas.2022.106850.
  • 42. Khan, H. M., & Delincée, H. (1995). Detection of radiation treatment of spices and herbs of Asian origin using thermoluminescence of mineral contaminants. Appl. Radiat. Isot., 46(10), 1071–1075. DOI:10.1016/0969-8043(95)00193-H.
  • 43. Park, E. -J., Jang, H. -N., Jo, D., Kim, G. -R., & Kwon, J. -H. (2013). Physicochemical quality and luminescence characteristics of gamma-irradiated dried fish products. Korean J. Food Sci. Technol., 45(2), 167–173. DOI: 10.9721/KJFST.2013.45.2.167.
  • 44. Arvanitoyannis, I. S., Stratakos, A. C. H., & Mente, E. (2008). Impact of irradiation on fish and seafood shelf life: A comprehensive review of applications and irradiation detection. Crit. Rev. Food Sci. Nutr., 49(1), 68–112. DOI: 10.1080/10408390701764278.
  • 45. Sanderson, D. C. W., Carmichael, L. A., Spencer, J. Q., & Naylor, J. D. (1996). Luminescence detection of shellfish. In C. H. McMurray, E. M. Stewart, R. Gray & J. Pearce (Eds.), Detection methods for irradiated foods – current status (pp. 139–148). Cambridge, UK: Royal Society of Chemistry.
  • 46. Pinnioja, S., & Pajo, L. (1995). Thermoluminescence of minerals useful for identification of irradiated seafood. Radiat. Phys. Chem., 46(4/6), 753–756. DOI: 10.1016/0969-806X(95)00255-V.
  • 47. Wong, Y. C., Sin, D. W. M., & Yao, W. Y. (2016). Food irradiation and its detection. In L. M. Nollet & F. Toldra (Eds.), Safety analysis of foods of animal origin (pp. 663–686). Boca Raton, Florida, US: CRC Press.
  • 48. Raffi, J., Fakirian, A., & Lesgards, G. (1994). Comparison between electron spin resonance and thermoluminescence in view of identification of irradiated aromatic herbs. Ann. Fals. Exp. Chim., 87, 125–134.
  • 49. Polónia, I., Esteves, M. P., Andrade, M. E., & Empis, J. (1995). Identification of irradiated peppers by electron spin resonance, thermoluminescence and viscosity. Radiat. Phys. Chem., 46(4/6), 757–760. DOI: 10.1016/0969-806X(95)00256-W.
  • 50. Sanderson, D. C. W., Carmichael, L. A., & Fisk, S. (2003). Thermoluminescence detection of irradiated fruits and vegetables: International interlaboratory trial. J. AOAC Int., 86(5), 971–975. DOI: 10.1093/jaoac/86.5.971.
  • 51. Schreiber, G. A., Wagner, U., Helle, N., Ammon, J., Buchholtz, H. -V., Delincée, H., Estendorfer, S., von Grabowski, H. -U., Kruspe, W., Mainczyk, K., Münz, H., Schleich, C., Vreden, N., Wiezorek, C., & Bögl, K. W. (1993). Thermoluminescence analysis to detect irradiated fruit and vegetables – an intercomparison study. Bericht des Instituts für Sozialmedizin und Epidemiologie des Bundesgesundheitsamtes. Berlin: German Federal Health Office (Bundesgesundheitsamt). (SozEp-Heft 3/1993).
  • 52. Marchioni, E., Anklam, E., Chabane, S., Delincée, H., Douifi, L., Hungerbühler, H., Pelleau, Y., Pinnioja, S., Raffi, J., Sanderson, D., & Wagner, U. (1999). Detection by thermoluminescence of an irradiation treatment of five species of dehydrated fruit and vegetables. Report on a CTCPA/AIFLD International Interlaboratory Study. Karlsruhe: Bundesforschungsanstalt für Ernährung. (BFE-R-99-02).
  • 53. Akram, K., Ahn, J. -J., Kim, G. -R., & Kwon, J. -H. (2012). Applicability of different analytical methods for the identification of γ-irradiated fresh mushrooms during storage. Food Sci. Biotechnol., 21(2), 573–579. DOI: 10.1007/s10068-012-0073-6.
  • 54. Arvanitoyannis, I. S., Stratakos, A. C. H., & Tsarouhas, P. (2009). Irradiation application in vegetables and fruits: A review. Crit. Rev. Food Sci. Nutr., 49(5), 427–462. DOI: 10.1080/10408390802067936.
  • 55. Todoriki, S., Kameya, H., Saito, K., & Hagiwara, S. (2014). Detection of commercially irradiated potatoes by thermoluminescence and photostimulated luminescence analyses. Food Sci. Technol. Res., 23(3), 555–561. DOI: 10.3136/fstr.20.555.
  • 56. Ahn, J. J., Kim, G. R., Akram, K., Kim, K. S., & Kwon, J. H. (2012). Effect of storage conditions on photostimulated luminescence of irradiated Garlic and potatoes. Food Res. Int., 47(2), 315–320. DOI: 10.1016/j.foodres.2011.07.031.
  • 57. Ahn, J. J., Kim, G. R., Akram, K., Kim, K. S., & Kwon, J. H. (2012). Luminescence characteristics of minerals separated from irradiated onions during storage under different light conditions. Radiat. Phys. Chem., 81(8), 1215–1219. DOI: 10.1016/j.radphyschem.2012.02.002.
  • 58. Yazici, A. N., Bedir, M., Bozkurt, H., & Bozkurt, H. (2008). Thermoluminescence properties of irradiated chickpea and corn. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 266(4), 613–620. DOI: 10.1016/j.nimb.2007.11.044.
  • 59. Khan, H. M., Bhatti, I. A., & Delincée, H. (2002). Thermoluminescence of contaminating minerals for the detection of radiation treatment of dried fruits. Radiat. Phys. Chem., 63(3/6), 403–406. DOI: 10.1016/S0969-806X(01)00630-2.
  • 60. Sanderson, D. C. W., Carmichael, L. A., & Naylor, J. D. (1996). Recent advances in thermoluminescence and photostimulated luminescence detection methods for irradiated foods. In C. H. McMurray, E. M. Stewart, R. Gray & J. Pearce (Eds.), Detection methods for irradiated foods – current status (pp. 124–138). Cambridge, UK: Royal Society of Chemistry.
  • 61. Heide, L., Guggenberger, R., & Bögl, K. W. (1990). Application of thermoluminescence measurements to detect irradiated strawberries. J. Agric. Food Chem., 38(12), 2160–2163. DOI: 10.1021/jf00102a012.
  • 62. Sillano, O., Román, A., Oeza, A., Rubio, T., & Espinoza, J. (1994). Application of thermoluminescence measurements to detect low dose gamma-irradiated table grapes. Radiat. Phys. Chem., 43(6), 585–588. DOI: 10.1016/0969-806X(94)90172-4.
  • 63. Khan, H. M., & Delincée, H. (1995). Detection of irradiation treatment of dates using thermoluminescence of mineral contaminants. Radiat. Phys. Chem., 46(4/6), 717–720. DOI: 10.1016/0969-806X(95)00248-V.
  • 64. Khan, H. M., Bhatti, I. A., & Delincée, H. (1998). Identification of irradiated pulses by thermoluminescence of the contaminating minerals. Radiat. Phys. Chem., 52(1/6), 145–149. DOI: 10.1016/S0969-806X(98)00064-4.
  • 65. Leffke, A., Helle, N., Linke, B., Bögl, K. W., & Schreiber, G. A. (1993). Studies on detection of irradiated citrus fruit and grains: Germination and some other techniques. In M. Leonardi, J. J. Raffi & J. -J. Belliardo (Eds.), Recent advances on detection of irradiated food. Proceedings (pp. 111–121). Luxembourg: Commission of the European Communities. (EUR/14315/en).
  • 66. Jo, D., Kim, B. -K., Kausar, T., & Kwon, J. -H. (2008). Study of photostimulated- and thermo-luminescence characteristics for detecting irradiated kiwifruit. J. Agric. Food Chem., 56(4), 1180–1183. DOI: 10.1021/jf072568y.
  • 67. European Committee for Standardization. (2022). Foodstuffs – Detection of irradiated foodstuff containing crystalline sugar by ESR spectroscopy. PN-EN 13708:2022. European Union, Brussels, Belgium.
  • 68. Guzik, G. P., Stachowicz, W., & Michalik, J. (2008). Study on stable radicals produced by ionizing radiation in dried fruits and related sugars by electron paramagnetic resonance spectrometry and photostimulated luminescence method – I. D-fructose. Nukleonika, 53(Suppl. 2), S89–S94.
  • 69. Da Costa, Z. M., Pontuschka, W. M., & Campos, L. L. (2005). A comparative study based on dosimetric properties of different sugars. Appl. Radiat. Isot., 62(2), 331–336. DOI: 10.1016/j.apradiso.2004.08.028.
  • 70. Guzik, G. P., Stachowicz, W., & Michalik, J. (2015). Identification of irradiated dried fruits using EPR spectroscopy. Nukleonika, 60(3), 627–631. DOI: 10.1515/nuka-2015-0093.
  • 71. Guzik, G. P., & Stachowicz, W. (2016). Study on radiation-induced radicals giving rise to stable EPR signal suitable for the detection of irradiation in L-sorbose-containing fruits. Nukleonika, 61(4), 461–465. DOI: 10.1515/nuka-2016-0075.
  • 72. Guzik, G. P., Stachowicz, W., & Michalik, J. (2019). Study on irradiated D-mannose isolated from cranberry. Nukleonika, 64(4), 139–143. DOI: 10.2478/nuka-2019-0018.
  • 73. Yordanov, N. D., Aleksieva, K., & Mansour, I. (2005). Improvement of the EPR detection of irradiated dry plants using microwave saturation and thermal treatment. Radiat. Phys. Chem., 73(1), 55–60. DOI: 10.1016/j.radphyschem.2004.06.008.
  • 74. Barea Sanchez, M. (2015). Final report of the intercomparison exercise for quality assurance on TL, PSL and EPR irradiated food detection methods (6th round). Spain: Servicio de Toxicologia Alimentaria et Centro Nacional de Alimentacion. 75. Raffi, J., & Angel, J. P. (1989). Electron spin resonance identification of irradiated fruits. Radiat. Phys. Chem., 34(6), 891–894. DOI: 10.1016/1359-0197(89)90325-1.
  • 76. Raffi, J., Angel, J. P., & Ahmend, S. H. (1991). Electron spin resonance identification of irradiated dates. Food Technol., 3/4, 26–30.
  • 77. Karakirova, Y., Yordanov, N. D., De Cooman, H., Vrielinck, H., & Callens, F. (2010). Dosimetric characteristics of different types of saccharides: An EPR and UV spectrometric study. Radiat. Phys. Chem., 79(5), 654–659. DOI: 10.1016/j.radphyschem.2009.12.003.
  • 78. Raffi, J., Stachowicz, W., Migdał, W., Barabassy, S., Kalman, B., Yordanov, N., Andrade, E., Prost, M., & Callens, F. (1998). Establishment of an eastern network of laboratories for identification of irradiated foodstuffs. Final Report of Copernicus Concerted Action. CCE. (CIPA-CT94-0134).
  • 79. Vanhaelewyn, G., Jansen, B., Pauwels, E., Sagstuen, E., Waroquier, M., & Callens, F. (2004). Experimental and theoretical electron magnetic resonance study on radiation-induced radicals in -L-sorbose single crystals. J. Phys. Chem. A, 108(16), 3308–3314. DOI: 10.1021/jp037886o.
  • 80. Vanhaelewyn, G., Lahorte, P., Proft, F., Mondelaers, W., Geerlings, P., & Callens, F. (2001). Electron magnetic resonance study of stable radicals in irradiated D-fructose single crystals. J. Phys. Chem. Chem. Phys., 3, 1729–1735. DOI: 10.1039/B008248L.
  • 81. International Organization for Standardization. (2013). Practice for use of the alanine-EPR dosimetry system. ISO/ASTM 51607:2013. Geneva, Switzerland.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c5f8892-dfc2-4f40-88b8-a479ea1ad62f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.