PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the possibility of using biochar from tomato green parts for energy purposes

Identyfikatory
Warianty tytułu
PL
Ocena możliwości wykorzystania biowęgla z części zielonych pomidorów do celów energetycznych
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of the analysis of the possibility of using the biochar from tomato haulm produced in the process of high-pressure pyrolysis for energy purposes. The research was carried out in laboratory conditions. For research purposes, four pressure and three temperature ranges have been adopted for research purposes. The experiments were carried out in 3 replications. In order to analyze the changes occurring in the material during the pyrolysis process, a physicochemical analysis was carried out consisting of technical analysis (moisture, ash, volatile matter content, calorific value) and elemental composition analysis (C, H, N, S content). The low-temperature pyrolysis process caused an increase in the carbon content in the tested material from 39% to a maximum of 50%, which also translated into an increase in lower calorific value from 14.52 to 23.31 MJ‧kg-1. Furthermore, the increase of this parameter was also correlated with the decrease in the moisture content of the material. Due to the constantly growing prices of fuels and waste management, this analysis may be helpful for agri-food producers looking for savings and using residual matter in an alternative way.
PL
W pracy przedstawiono wyniki analizy możliwości wykorzystania do celów energetycznych biowęgla z łętów pomidorowych, powstałego w procesie pirolizy wysokociśnieniowej. Badania przeprowadzono v warunkach laboratoryjnych. Do celów badawczych przyjęto cztery zakresy ciśnień i trzy zakresy temperatur. Eksperymenty przeprowadzono w 3 powtórzeniach. W celu przeanalizowania zmian zachodzących w materiale podczas procesu pirolizy przeprowadzono analizę fizykochemiczną składającą się z analizy technicznej (zawartość wilgoci, popiołu, części lotnej, wartość opałowa) oraz składu pierwiastkowego (zawartość C, H, N, S). Proces pirolizy niskotemperaturowej spowodował wzrost zawartości węgla w badanym materiale od 39% do maksymalnie 50%, co przełożyło się również na wzrost wartości opałowej z 14,52 do 23,31 MJ·kg·'. Ponadto wzrost tego parametru był również skorelowany ze spadkiem wilgotności materiału. Ze względu na stale rosnące ceny paliw i konieczność zagospodarowania odpadów analiza ta może być pomocna dla producentów rolnospożywczych poszukujących oszczędności i alternatywnego wykorzystania pozostałości.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
75--82
Opis fizyczny
Bibliogr. 41 poz., fig., tab.
Twórcy
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
  • Uniwersytet Przyrodniczy we Wrocławiu
Bibliografia
  • [1] BP. Statistical Review of World Energy 2021. Available online: https://www.bp.com/content/dam/bp/businesssites/ en/global/corporate/pdfs/energy-econom ics/statistical-review/bp-stats-review-2021-ful1-report.pdf (accessed on 8 March 2023).
  • [2] Enerdata World Energy & Climate Statistics - Yearbook 2021. Available online: https:// earbook.enerdata.net/totalenergy/ world-consumption-statistics.html (accessed on 8 March 2023).
  • [3] Roser, M. The world's energy problem. 2020. Available online: https://ourworldindata.org/, orld -energ)-problem (accessed on 8 March 2023).
  • [4] lntemational EnergyAgency. Key World Energy Statistics 2021 uppl . vailable online: https://www.iea.org/reports/key-world-energy-statistics-2021/supply (accessed on 8 March 2023).
  • [5] European Environmental Agency. Emissions of the Main Air Pollutants in Europe. 202 I. ailable online: https://www.eea.europa.eu/ims/emissions-of-the-main-air (accessed on 8 March 2023).
  • [6] European Environmental Agency. Air pollution. 2020. ailable online: https://www.eea.europa.eu/soer/2015/europe/air (accessed on 8 March 2023).
  • [7] Sicard, P.; Agathokleous, E.; De Marco, A.; Paoletti, E.; Calatayud V. Urban population e po ure to air pollution in Europe over the last decades. Environ. Sci. Eur. 2021, 33, 28. doi: 1 O. I 186/s I 2302-020-00450-2.
  • [8] European Parliament and Council. Annex li to the Directive 2003/87/EC of the European Parliam nt and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the ommunity and amending Council Directive 96/61/EC (Text with EEA relevance). (25 October 2003). Off J. Eur. nion 2003, L275, 32--46.
  • [9] European Environment Agency Glossary. Carbon dioxide equi a lent. 200 I. a i labie online: https://www.eea.europa.eu/help/glossary/eea-glossary/carbon-dioxide-equivalent (accessed on 8 March 2023).
  • [10] Eurostat. Quarterly greenhouse gas emissions in the EU. Available online: https://ec.europa.eu/eurostat/statisticsexplained/ index.php?title=Quarterly green house gas em issions in_ the_ EU#Emissions by economic activity (accessed on 8 March 2023).
  • [11] European Parliament and Council ofthe European Union. Regulation (EU) 2018/ 1999 of the European Parliamentand of the Council of 11 December 2018 on the Govemance of the Energy Union and Climate Action. Brussel Belgium, 2018. '
  • [12] European Commission. Cornmission Presents Renewable Energy Directive Revision. 2021. A ailable online: https://ec.europa.eu/info/news/commission-presents-renewable-energy-directive-revision-2021-jul- l4 en (accessed on 8 March 2023). -
  • [13] European Commission. New EU Forest Strategy for 2030. Comrnunication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2021) 572 Fmal; European Comm1ss1on: Brussels, Belgium, 2021.
  • [14] Material Economics. EU Biomass Use in a Net—Zero Economy—A Course Correction for EU Biomass; Material Economics Sverige AB: Stockholm, Sweden, 2021.
  • [15] Andersen, S.; Allen, B.; Domingo, G.C. Biomass in the EU Green Deal: Towards Consensus on the Use of Biomass for EU Bioenergy’ Policy Report, 2021. Available online: https://ieep.eu/pub1ications/biomass-in-the—eu—green-deal- towards-consensus—on-sustainab1e—use—of-biomass—for—eu—bioenergy/ (accessed on 8 March 2023).
  • [16] EU Agricultural Outlook for Markets, Income and Environment 2021—2031. Available online: https ://ec. europa.eu/info/sites/default/files/food-farming-fisheries/farming/documents/agricultural-outlook-2021 -report_en.pdf (accessed on 8 March 2023).
  • [17] Statistical Yearbook of Agriculture 2018. Central Statistical Office of Poland. Statistical Information. Available online: https://stat. gov.pl/download/gfx/portalinformacyj ny/en/defaultaktualnosci/3328/6/13/1/statistical_yearbook_of_agriculture_2018.pdf (accessed on 8 March 2023).
  • [18] Lovdal, T.; Van Droogenbroeck, B.; Eroglu, E.C.; Kaniszewski, S.; Agati, G.; Verheul, M.; Skipnes, D. Valorization of Tomato Surplus and Waste Fractions: A Case Study Using Norway, Belgium, Poland, and Turkey as Examples. Foods 2019, 8, 229. doi: 10.3390/foods8070229.
  • [19] Reinoso, J .R.; Pinna-Hernandez, G.; Fernandez, M.F.; Molina, J .S.; Diaz, F.R.; Hernandez, J.L.; Fernandez, F.A. Optimal processing of greenhouse crop residues to use as energy and C02 sources. Ind. Crops Prod. 2019, 137, 662- 671. doi: 10.3390/agronomy11040626.
  • [20] Monterumici, C.M.; Rosso, D.; Montoneri, E.; Ginepro, M.; Baglieri, A.; Novotny, E.H.; Kwapinski, W.; Negre, M. Processed vs. Non—Processed Biowastes for Agriculture: Effects of Post—Harvest Tomato Plants and Biochar on Radish Growth, Chlorophyll Content and Protein Production. Int. J. Mol. Sci. 2015, 16, 8826-8843. doi:10.3390/ijms16048826.-
  • [21] Itoh, T.; Fujiwara, N.; Iwabuchi, K.; Narita, T.; Mendbayar, D.; Kamide, M.; Niwa, S.; Matsumi, Y. Effects of pyrolysis temperature and feedstock type on particulate matter emission characteristics during biochar combustion. Fuel Process. Technol. 2020, 204, 106408. doi: 10.1016/j.fuproc.2020.106408.
  • [22] European Biomass Industry Association. Pyrolysis—European Biomass Industry Association. Available online: https://www.eubia.org/cms/wiki-biomass/pyrolysis—and-gasification/pyrolysis/ (accessed on 8 March 2023).
  • [23] Wang, Y.; Ling, Q.; Zhu, M.; Sun, G.; Zhang, T.; Kang, K. Comparative evaluation of hydrothermal carbonization and low temperature pyrolysis of eucommia ulmoides oliver for the production of solid biofuel. Sci. Rep. 2019, 9, 5535. doi: 10.1038/s41598-019-38849-4.
  • [24] Butnaru, E.; Brebu, M. The Thermochemical Conversion of Forestry Residues from Silver Fir (Abies alba Mill.) by Torre-faction and Pyrolysis. Energies 2022, 15, 3483. doi: 10.3390/en15103483.
  • [25] Wang, A.G.; Austin, D.; Song, H. Catalytic Biomass Valorization. In Biomass Volume Estimation and Valorization for Energy; Tumuluru, J .S., Ed.; InTechOpen: London, UK, 2017.
  • [26] Zh, K.; Gendy, N.S.; Ha, A.C.; ShaltoutTh, H.; Mmd, H. Upgrading of Tomato (Solanum Lycopersicum) Agroindustrial Wastes. J. of Microb. Biochem. Technol. 2018, 10, 46-48. doi: 10.4172/1948-5948.1000394.
  • [27] Liu, Z.; Han, G. Production of solid the] biochar from waste biomass by low temperature pyrolysis. Fuel 2015, 158, 159—165. doi: 10.1016/j.fuel.2015.05.032.
  • [28] Świechowski, K.; Syguła, E.; Koziel, J.A.; Stępień, P.; Kugler, S.; Manczarski, P.; Białowiec, A. Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived F uel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel. Data 2020, 5, 48. doi: 10.3390/data5020048.
  • [29] Chen, W.-H.; Lin, B.-J. Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres. Energy, 2016, 94, 569-578. doi: 10.1016/j.energy.2015.11.027.
  • [30] Foong, S.Y.; Liew, R.K.; Yang, Y.; Cheng, Y.W.; Yek, P.N.Y.; Mahari, W.A.W.; Aghbashlo, M. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem. Eng. J. 2020, 389, 124401. doi: 10.1016/j.cej.2020.124401.
  • [31] Grade, S.; Berling, E.; Blanco, B.; Caceres, R.; Checa, J.; Lonardo, S.; Lemmens, P.; Magan, J.; Vandecasteele, B.; Veberic, R. 2019. EIP-AGRI Focus Group —Circular horticulture Mini-paper —Circularity and/or Valorisation of Biomass: Crop Residues, By-products and Extraction of Molecules. 2019.
  • [32] Ayala—Cortes, A.; Arancibia-Bulnes, C.A.; Villafan-Vidales, H.I.; Lobato-Peralta, D.R.; Martinez-Casillas, D.C.; Cuentas—Gallegos, A.K. Solar Pyrolysis of Agave and Tomato Pruning Wastes: Insights of the Effect of Pyrolysis Operation Pa—rameters on the Physicochemical Properties of Biochar. In Proceedings of the AIP Conference Proceedings; American In—stitute of Physics Inc.: College Park, MD, USA, 2019; Volume 2126.
  • [33] Yek, P.N.Y.; Chan, Y.H.; Foong, S.Y.; Wan Mahari, W.A.; Chen, X.; Peng, W.; Liew, R.K.; Ding, L.; Tsang, Y.F.; Sonne, C.; Lam, S.S. Co-Processing of Biomass and Plastics Waste Via Integrated Pyrolysis-Gasification Approach: Recent Advances, Challenges, and Opportunities. SSRN Electronic Journal 2022 doi: 10.2139/ssm.4074339.
  • [34] Standard PN—EN ISO 18134-1. Solid Biofuels - Determination of Moisture Content — Oven Dry Method - Part 1: Total Moisture — Reference method; Warsaw, Poland; 2016. Available online:https://standards.globalspec.com/std/9951652/iso-18134-1 (accessed on 28 January 2023).
  • [35] Standard PN-EN ISO 18125:2017-07. Solid Biofuels - Determination of alorific Value; Warsaw, Poland; 2017Available online: https://standards.globalspec.com/std/9972508/i o-I 8125 (accesed on 28 January 2023).
  • [36] Bukowski, p_ Socio-Economic Aspects Energy Use Agricultural Biomass; Polskie Towarzystwo Inżynierii Rolniczej: Cracow, Poland, 2019; ISBN 978-83-64377-34-I.
  • [37] Standard PN-EN ISO 18122:2016-0 I. Solid Biofuels - Determination of Ash Content; Warsaw, Poland; 2016. Available online: https://standards.globalspec.com/std/205 I 854/iso-18122 (~cce~sed on 28 January 2023). .
  • [38] Standard PN-EN ISO I 8123:2016-0 I. Solid Biofuels - Determinatlon of the ~ontent of Volatile Matter; Warsaw, Poland; 20 I 6. Available online: https://standards.globalspec.com/std/205 1856/Jso-18 I 23 (acces ed on 28 January 2023).
  • [39] Standard PN-EN ISO I 6948:2015-07. Solid Biofuels - Determination of Total Content of Carbon, Hydrogen and Nitrogen; Warsaw, Poland; 2015. Available online: https://standards.globalspec.com/ td/2048180/Jso-l 6948 (accessed on 28 January 2023).
  • [40] Szufa, S.; Wielgosiński, G.; Piersa, P.; Czerwińska, J.; Dzikuć, M.; Adrian, Ł.; Lewandowska, W.; Marczak, M.Torrefaction of Straw from Oats and Maize for Use as a Fuel and Additive to Organie Fert1hzers- TGA Analysis, Kinetics as Products for Agricultural Purposes. Energies 2020, 13, 2064. doi: I 0.3390/en I 3082064.
  • [41] Piersa, P.; Szufa, S.; Czerwińska, J.; Onyay, H.; Adrian, Ł.; Wielgosinski, G.; Obraniak, A.; Lewandowska, W.; Marczak- Grzesik, M.; Dzikuć, M.; Romanowska-Duda, Z.; Olejnik, T.P. Pine Wood and ewage ludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers. Energies 2021 , 14, 8176. doi: 10.3390/enl4238176.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c5da96b-22d0-4dee-aa77-cc53befd091b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.