PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiative Properties of a Red Phosphorus Based Combustion Flame

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spectral energy, Eλ (in J·g–1·sr–1), of a model obscurant composition containing red phosphorus (P(red), 59 wt.%), Zr (15 wt.%), potassium nitrate (KNO3, 21 wt.%) and a polyacrylate binder (5 wt.%), was determined in band II (λ = 3-5 μm) and band V (λ = 8-14 μm). The spectral energy obtained in band V was higher than the spectral energy in band II. The band ratio V/II and spectral energy indicated that the combustion flame of the pyrolant cannot be described as a graybody. A combined DTA/TG analysis under anaerobic conditions revealed an initial exotherm followed by an endothermic process, the latter coinciding with a mass loss of >40 wt.%, indicative of the vaporization of P(red).
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Lutradyn-Energetic Materials Science & Technology Consulting, Germany
Bibliografia
  • [1] Vine, T.A.; Fletcher, W. An Investigation of Failures to Function of a Red Phosphorus Marine Marker. Proc. 29th Int. Pyrotech. Semin., Westminster, CO, USA, 2002, pp. 477-490.
  • [2] Koch, E.-C. Special Materials in Pyrotechnics: V. Military Applications of Phosphorus and its Compounds. Propellants Explos. Pyrotech. 2008, 33: 165-176.
  • [3] Heinz, D.; Asijew, R.G.; Müller, I.F.; Kauschka, G. On the Theory and Practice of Phosphorus Oxidation. Pure & Appl. Chem. 1980, 52: 825-842.
  • [4] Snelson, A. An Investigation of a Cryogenic Matrix Isolation Approach for Characterizing Phosphorus Acid Aerosol. US Army Armament, Munitions & Chemical Command, Aberdeen Proving Ground, Report CRDC-CR-84050, MD, USA, 1984, p. 58.
  • [5] Klusáček, L.; Navrátil, P. The Use and Application of Red-Phosphorus Pyrotechnic Composition for Camouflage in the Infrared Region of Radiation. Propellants Explos. Pyrotech. 1997, 22: 74-77.
  • [6] Milham, M. A Catalog of Optical Extinction Data for Various Aerosols/Smokes. Aberdeen Proving Ground. Report ED-SP-77002, MD, USA, 1976, p. 86.
  • [7] Carlon, H.R.; Anderson, D.H.; Milham, M.E.; Tarnove, T.L.; Frickel, R.H.; Sindoni, O.I. Infrared Extinction Spectra of Some Common Liquid Aerosols. Aberdeen Proving Ground, Report ED-TR-77006, MD, USA, 1976, p. 33.
  • [8] Milham, M.E.; Anderson, D.H.; Frickel, R.H. Infrared Optical Properties of Phosphorus-derived Smoke. Appl. Opt. 1982, 21: 2501-2507.
  • [9] Sordoni, N.; Heard, W.; Rouse, W. Pyrotechnic Smoke Analysis, Volume I. Edgewood Research, Development & Engineering Center, Report ERDEC-TR-129, MD, USA, 1993, p. 51.
  • [10] Cudziło, S. Studies of IR Screening Smoke Clouds. Propellants Explos. Pyrotech. 2001, 26: 12-16.
  • [11] Koch, E.-C.; Dochnahl, A. Pyrotechnic Active Mass for Producing an Aerosol Highly Emissive in the Infrared Spectrum and Impenetrable in the Visible Spectrum. Patent EP 1173394, 1999.
  • [12] Noläng, B. EkviCalc, version 4.6.1. BeN Systems, 2017.
  • [13] Smit, K.J.; de Yong, L.V.; Gray, R. Observation of Infrared Emission Spectra from Silicon Combustion Products. Chem. Phys. Lett. 1990, 254: 197-202.
  • [14] Smit, K.J.; Hancox, R.J.; Hatt, D.J.; Murphy, S.P.; de Yong, L.V. Infrared Emitting Species Identified in the Combustion of Boron-based Pyrotechnic Compositions. Appl. Spectr. 1997, 51: 1400-1404.
  • [15] Koch, E.-C. Metal-Fluorocarbon Based Energetic Materials. Wiley-VCH, Weinheim, 2012, pp. 162-164.
  • [16] Andreotti, J.; Hirschman, A. Infrared Decoy Method Using Polydimethylsiloxane Fuel. Patent US 5343796, 1994.
  • [17] Glassman, I.; Yetter, R.A. Combustion. 4th Ed., Academic Press, Amsterdam, 2009, p. 496.
  • [18] Miyata, K.; Kubota, N. Combustion of Ti and Zr Particles with KNO3. Propellants Explos. Pyrotech. 1996, 21: 29-35.
  • [19] Whiston Jr., M.E. Handbook of the Infrared Optical Properties of Al2O3, Carbon, MgO and ZrO2. Vol. I, SAMSO-TR-75-131, The Aerospace Corporation, El Segundo, CA, USA, 1975, p. 471.
  • [20] Li, Z.; Chen, N.; Wang, J.; Li, P.; Guo, M.; Wang, Q.; Li, C.; Wang, C.; Guo, T.; Chen, S. Efficient Reduction of Nitric Oxide Using Zirconium Phosphide Powders Synthesized by Elemental Combination Method. Sci. Rep. 2017: 13044.
  • [21] Braun, U.; Schartel, B. Flame Retardant Mechanisms of Red Phosphorus and Magnesium Hydroxide in High Impact Polystyrene. Macromol. Chem. Phys. 2004, 205: 2185-2196.
  • [22] Koch, E.-C.; Weiser, V.; Roth, E. 2,4,6-Trinitrotoluene: A Surprisingly Insensitive Energetic Fuel and Binder in Melt-Cast Decoy Flare Compositions. Angew. Chem. Int. Ed. 2012, 51: 10038-10040.
  • [23] Yayla, S. Radiometric Performances of MTV and Modified MTV Compositions for Three Different Wavelength Intervals. Proc. 16th Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2013, 421-432.
  • [24] Matsui, Y.; Kamimoto, T.; Matsuoka, S. A Study on the Application of the Two-Color Method to the Measurement of Flame Temperature and Soot Concentration in Diesel Engines. SAE Trans. 1980, 89: 3043-3055.
  • [25] Yipeng, S.; Chun, L.; Huaichun, Z. A Simple Judgment Method of Gray Property of Flames Based on Spectral Analysis and the Two-Color Method for Measurements of Temperatures and Emissivity. Proc. Combust. Inst. 2011, 33: 735-741.
  • [26] Bannasch, H.; Wegscheider, M.; Fegg, M.; Büsel, H. Method for the Creation of an Artificial Target. Patent EP 0664876B1, 1997.
  • [27] Wolfe, W.L.; Zissis, G.J. The Infrared Handbook. Office of Naval Research Department of the Navy, Washington, DC, 1978, pp. 1/1-41.
  • [28] Koch, H.W.; Pöpperl, F. Comparison of Temperature Distribution and Burning Rate of Incendiaries. (in German) Deutsch-Französisches Forschungsinstitut, Technische Mitteilung T 37/65, Saint Louis, 1965, pp. 21 + VII.
  • [29] Koch, H.W.; Licht, H.H. Incendiaries, Incendiary Ammunition, Incendiary Effects. (in German) Deutsch-Französisches Forschungsinstitut, Bericht CO 34/74, Saint Louis, 1974, pp. 19 + I.
  • [30] Bell, E.E.; Burnside, P.H.; Dickey, F.P. Spectral Radiance of Some Flames and Their Temperature Determination. J. Opt. Soc. Amer. 1960, 50: 1286-1292.
  • [31] Ludwig, C.B.; Malkmus, W.; Reardon, J.E.; Thomson, J.A.L. Handbook of Infrared Radiation from Combustion Gases. National Aeronautics and Space Administration, Washington, 1973, p. 190.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c5b32f6-10d8-4c0c-ac31-abcb171845f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.