PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiocarbon 14C method as useful tool for flue gas monitoring application: review

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cosmic-ray research which started just after the second world war in 1947, encouraged widespread use of radioactive particles in many areas of science and technology, starting from astronomy, chemistry, archaeology, biology, botany, medicine and lately ending with environmental studies. Method based on measurements of the radioactive elements remains in various samples (solid, liquid and gaseous) can be very useful tool for ecological and environmental analytical measurements. The 14C liquid scintillating counting method was used for simplified determination of the biomass content in flue gas from combustion processes or in the finished bio-product. Review of the latest results and progress in this research area shows the growth of interest from industrial sector in normalised method for biomass content determination.
Słowa kluczowe
Rocznik
Strony
247--251
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
Bibliografia
  • Aeppli C., Carmichael C.A., Nelson R.K., Lemkau K.L., Graham W.M., Redmond M.C., Valentine D.L., Reddy C.M. (2012). Oil weathering after the deepwater horizon disaster led to the formation of oxygenated residues. Environmental Science & Technology, Vol. 46, Is. 16, 8799-8807.
  • Agency E.E. (2013). Renewable energy in gross inland energy consumption (CSI 030/ENER 029) - Assessment. Brussel, BE.
  • Anderson E.C., Libby W.F., Weinhouse S., Reid A.F., Kirshenbaum A.D., Grosse A.V. (1947). Natural radiocarbon from cosmic radiation. Physical Review, Vol. 72, No. 10, 931-936.
  • Aranda Usón A., López-Sabirón A.M., Ferreira G., Llera Sastresa E. (2013). Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renewable and Sustainable Energy Reviews, Vol. 23, 242-260.
  • ASTM D6866-08 (2008) Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis.
  • Bentsen N., Felby C. (2012). Biomass for energy in the European Union - a review of bioenergy resource assessments. Biotechnology for Biofuels, Vol. 5, No. 1, 25.
  • Berndes G. (2003). The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy, Vol. 25, 1-28.
  • Bogner J., Pipatti R., Hashimoto S., Diaz C., Mareckova K., Diaz L., Kjeldsen P., Monni S., Faaij A., Gao Q., Zhang T., Ahmed M.A., Sutamihardja R.T., Gregory R. (2008). Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste management & research: the journal of the International Solid Wastes and Public Cleansing Association, ISWA, Vol. 26, No. 1, 11-32.
  • Bridgwater A. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, Vol. 91, 87-102.
  • Calcagnile L., Quarta G., D’Elia M., Ciceri G., Martinotti V. (2011). Radiocarbon AMS determination of the biogenic component in CO2 emitted from waste incineration. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 269, No. 24, 3158-3162.
  • Calvin M. (1948). Investigation of reaction mechanisms and photosynthesis with radiocarbon. Nucleonics, Vol. 2, No. 3, 40-51.
  • Camilli R., Reddy C.M., Yoerger D.R., Van Mooy B.A.S., Jakuba M.V., Kinsey J.C., McIntyre C.P., Sylva S.P., Maloney J.V. (2010). Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science, Vol. 330, No. 6001, 201-204.
  • CEN/TR15591 (2007) Solid recovered fuels – Determination of the biomass content based on the 14C method - CEN/TR, Brussel, p. 15591.
  • Clayton G.D., Arnold J.R., Patty F.A. (1955). Determination of sources of particulate atmospheric carbon. Science, Vol. 122, Is. 3173, 751-753.
  • Commission E. (2010). A strategy for competitive, sustainable and secure energy. European Commission, Brussels.
  • Currie L.A., Klouda G. A., Klinedinst D.B., Sheffield A.E., Jull A.J.T., Donahue D.J., Connolly M.V. (1994). Determination of sources of particulate atmospheric carbon. Nuclear Inst. and Methods in Physics Research, B, Vol. 92, Is. 1-4, 404-409.
  • EU, C. (2003). Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 on establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC. Official Journal of the European Union, L275, 32-46.
  • Fellner J., Cencic O., Rechberger H. (2007). New method to determine the ratio of electricity production from fossil and biogenic sources in waste-to-energy plants. Environmental Science and Technology, Vol. 41, Is. 7, 2579-2586.
  • Fujino J., Yamaji K., Yamamoto H. (1999). Biomass-Balance Table for evaluating bioenergy resources. Applied Energy, Vol. 63, 75-89.
  • Gramling C.M., McCorkle D.C., Mulligan A.E., Woods T.L. (2003). A carbon isotope method to quantify groundwater discharge at the land-sea interface. Limnology and Oceanography, Vol. 48, Is. 3, 957-970.
  • Grosse A.V., Libby W.F. (1947) Cosmic radiocarbon and natural radioactivity of living matter. Science, Vol. 106, No. 2743, 88-89.
  • Hall D., House J. (1995). Biomass energy in Western Europe to 2050. Land Use Policy, Vol. 12, 37-48.
  • Hoogwijk M. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy, Vol. 25, 119-133.
  • Johansson T., Kelly H., Reddy A., Williams R. (1993). Renewable fuels and electricity for a growing world economy. Chapter 1, In: T.B. Johansson, H. Kelly, A.K.N. Reddy and R. Williams (eds.), Renewable Energy-Sources for Fuels and Electricity, Island Press, Washington, 1-72,
  • Joye S.B., MacDonald I.R., Leifer I., Asper V. (2011). Magnitude andoxidation potential of hydrocarbon gases released from the BP oil well blowout. Natture Geoscience, Vol. 4, No. 3, 160-164.
  • Libby W.F., Anderson E.C., Arnold J.R. (1949). Age determination by radiocarbon content - world-wide assay of natural radiocarbon. Science, Vol. 109, No. 2827, 227-228.
  • Mohn J., Szidat S., Fellner J., Rechberger H., Quartier R., Buchmann B., Emmenegger L. (2008). Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances. Bioresource Technology, Vol. 99, No. 14, 6471-6479.
  • Narayan R. (2006). Biobased and Biodegradable Polymer Materials: Rationale, Drivers, and Technology Exemplars. Degradable Polymers and Materials. American Chemical Society.
  • Palstra S.W.L., Meijer H.A.J. (2010). Carbon-14 based determination of the biogenic fraction of industrial CO2 emissions – Application and validation. Bioresource Technology, Vol. 101, No. 10, 3702-3710.
  • Panoutsou C., Eleftheriadis J., Nikolaou A. (2009). Biomass supply in EU27 from 2010 to 2030. Energy Policy, Vol. 37, 5675-5686.
  • Reddy C.M., DeMello J.A., Carmichael C.A., Peacock E.E., Xu L., Arey J.S. (2008). Determination of biodiesel blending percentages using natural abundance radiocarbon analysis: Testing the accuracy of retail biodiesel blends. Environmental Science and Technology, Vol. 42, No. 7, 2476-2482.
  • Reinhardt T., Richers U., Suchomel Horst H. (2008). Hazardous waste incineration in context with carbon dioxide. Waste Management and Research, Vol. 26, No. 1, 88-95.
  • Rethemeyer J., Kramer C., Gleixner G., John B., Yamashita T., Flessa H., Andersen N., Nadeau M.-J., Grootes P.M. (2005). Transformation of organic matter in agricultural soils: radiocarbon concentration versus soil depth. Geoderma, Vol. 128, No. 1-2, 94-105.
  • Ryan L., Convery F., Ferreira S. (2006). Stimulating the use of biofuels in the European Union: Implications for climate change policy. Energy Policy, Vol. 34, No. 17, 3184-3194.
  • Siemons R., Vis M., van den Berg D., McChesney I., Whiteley M., Nikolaou N. (2004). Bio-energy’s Role in the EU Energy Market: A View of Developments until 2020. Report to the European Commission.
  • Simon H., Rauschenbach P., Frey A. (1968). Unterscheidung von Gärungsalkohol und Essig von synthetischem Material durch den14C-Gehalt. Zeitschrift für Lebensmitteluntersuchung und-Forschung A., Vol. 136, 279-284.
  • Skytte K., Meibom P., Henriksen T. (2006). Electricity from biomass in the European union-With or without biomass import. Biomass Bioenergy, Vol. 30, 385-392.
  • Staber W., Flamme S., Fellner J. (2008). Methods for determining the biomass content of waste. Waste Management and Research, Vol. 26(1), 78-87.
  • Swisher J., Wilson D. (1993). Renewable energy potentials. Energy, Vol. 18, 437 - 459.
  • Tachibana Y., Masuda T., Funabashi M., Kunioka M. (2010). Chemical synthesis of Fully Biomass-Based Poly (butylene succinate) from Inedible-Biomass-Based Furfural and Evaluation of Its Biomass Carbon Ratio. Biomacromolecules, Vol. 11(10), 2760-2765.
  • Thran D., Seidenberger T., Zeddies J., Offermann R. (2010). Global biomass potentials - Resources, drivers and scenario results. Energy for Sustainable Development, Vol. 14, 200-205.
  • UE, C. (2007) COMMISSION DECISION of 18 July 2007 establishing guidelines for the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council. Official Journal of the European Union, L229, 1-85.
  • van Dam J., Faaij A., Lewandowski I., Fischer G. (2007) Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass Bioenergy, Vol. 31, 345-366.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c5b2c5b-c53d-4194-b273-3f30e33282ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.