PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of the hybrid distributed Bragg reflectors for mid-infrared applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, an analysis of the optical performance of two types of distributed Bragg reflector structures based on GaAs and InP material systems was carried out. The structures were designed for maximum performance at 4 μm with their reflectivity achieving between 80 and 90% with eight pairs of constituent layers. To further enhance the performance of these structures, additional Au layers were added at the bottom of the structure with Ti precoating applied to improve the adhesivity of the Au to the semiconductor substrate. The optimal range of Ti layer thickness resulting in the improvement of the maximum reflectivity was determined to be in between 5 and 15 nm.
Słowa kluczowe
Rocznik
Strony
art. no. e149168
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Microelectronics and Nanotechnology, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Microelectronics and Nanotechnology, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Department of Microelectronics and Nanotechnology, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  • Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Mikołajczyk, J., Weih, R. & Motyka, M. Optical wireless link operated at the wavelength of 4.0 μm with commercially available interband cascade laser. Sensors 21, 4102 (2021). https://doi.org/10.3390/s21124102.
  • [2] Sigrist, M. W. Air monitoring by spectroscopic techniques. Chemical analysis. (Wiley: New York, 1993).
  • [3] Kluczynski, P. et al. Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range. Appl. Phys. B 105, 427-434 (2011). https://doi.org/10.1007/s00340-011-4645-6.
  • [4] Tittel, F. K., Richter, D. & Fried, A. A. Mid-Infrared Laser Applications in Spectroscopy. in Solid-state mid-infrared laser sources. Top. Appl. Phys. (eds. Sorokina, I. T. & Vodopyanov, K. L.) 89, 458-529 (Springer, 2003). https://doi.org/10.1007/3-540-36491-9_11.
  • [5] Risby, T. H. & Tittel, F. K. Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis. Proc. SPIE. 49, 111123 (2010). https://doi.org/10.1117/1.3498768.
  • [6] Wang, C. & Sahay, P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors 9, 8230-8262 (2009). https://doi.org/10.3390/s91008230.
  • [7] Guan, B., Li, P., Arafin, S., Alaskar, Y. & Wang, K. L. Investigation of single-mode vertical-cavity surface-emitting lasers with graphene-bubble dielectric DBR. Photonics Nanostruct. 28, 56-60 (2018). https://doi.org/https://doi.org/10.1016/j.photonics.2017.07.005.
  • [8] Koyama, F. Recent advances of VCSEL photonics. J. Light. Technol. 24, 4502-4513 (2006). https://doi.org/10.1109/JLT.2006.886064.
  • [9] Wang, J., Sanders, S. T., Jeffries, J. B. & Hanson, R. K. Oxygen measurements at high pressures with vertical cavity surface-emitting lasers. Appl. Phys. B 72, 865-872 (2001). https://doi.org/10.1007/s003400100539.
  • [10] Ansbæk, T., Chung, I.-S., Semenova, E. S., Hansen, O. & Yvind, K. Resonant MEMS tunable VCSEL. IEEE J. Sel. Top. Quantum Electron. 19, 1702306 (2013). https://doi.org/10.1109/JSTQE.2013.2257164.
  • [11] Liang, Y. et al. Room temperature surface emission on large-area photonic crystal quantum cascade lasers. Appl. Phys. Lett. 114, 31102 (2019). https://doi.org/10.1063/1.5082279.
  • [12] Yao, Y. et al. Improved power and far-field pattern of surface-emitting quantum cascade lasers with strain compensation to operate at 4.3 μm. Jap. J. Appl. Phys. 61, 052001 (2022). https://doi.org/10.35848/1347-4065/ac5dbb.
  • [13] Mikulicz, M. et al. Enhancement of quantum cascade laser intersubband transitions via coupling to resonant discrete photonic modes of subwavelength gratings. Opt. Express 31, 26898-26909 (2023). https://doi.org/10.1364/OE.496261.
  • [14] Janczak, M. et al. Threshold performance of pulse-operating quantum-cascade vertical-cavity surface-emitting lasers. Opt. Express 30, 45054-45069 (2022). https://doi.org/10.1364/OE.474086.
  • [15] Al-Saymari, F. A. et al. Electroluminescence enhancement in mid-infrared InAsSb resonant cavity light emitting diodes for CO2 detection. Appl. Phys. Lett. 114, 171103 (2019). https://doi.org/10.1063/1.5090840.
  • [16] Al-Saymari, F. A. et al. Mid-infrared resonant cavity light emitting diodes operating at 4.5 μm. Opt. Express 28, 23338-23353 (2020). https://doi.org/10.1364/OE.396928.
  • [17] Green, A. M., Gevaux, D. G., Roberts, C. & Phillips, C. C. Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared. Physica E Low Dimens. Syst. Nanostruct. 20, 531-535 (2004). https://doi.org/https://doi.org/10.1016/j.physe.2003.09.004.
  • [18] Ghosh, S., Kumar, H., Mukhopadhyay, B. & Chang, G.-E. Design and modeling of high-performance DBR-based resonant-cavity-enhanced GeSn photodetector for fiber-optic telecommunication networks. IEEE Sens. J. 21, 9900-9908 (2021). https://doi.org/10.1109/JSEN.2021.3054475.
  • [19] Kumar, H., Pandey, A. K. & Lin, C.-H. Optimal design and noise analysis of high-performance DBR-integrated lateral germanium (Ge) photodetectors for SWIR applications. IEEE J. Electron Devices Soc. 10, 649-659 (2022). https://doi.org/10.1109/JEDS.2022.3195210.
  • [20] Al Sayem, A. & Rahman, M. S. Tunable Fabry Perot Filter Using All-Dielectric Multilayer Anisotropic Metamaterial in The Mid-Infrared Frequency Range. in 9th International Conference on Electrical and Computer Engineering (ICECE) 361-364 (IEEE, 2016). https://doi.org/10.1109/ICECE.2016.7853931.
  • [21] Bauer, A. et al. Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range. Appl. Phys. Lett. 95, 251103 (2009). https://doi.org/10.1063/1.3270002.
  • [22] Dallner, M., Hau, F., Höfling, S. & Kamp, M. InAs-Based Interband-Cascade-Lasers in the 6-7 μm Wavelength Range. in International Semiconductor Laser Conference 42-43 (IEEE, 2014). https://doi.org/10.1109/ISLC.2014.154.
  • [23] Bewley, W. W. et al. Room-temperature mid-infrared interband cascade vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 109, 151108 (2016). https://doi.org/10.1063/1.4964840.
  • [24] Veerabathran, G. K., Sprengel, S., Andrejew, A. & Amann, M.-C. Room-temperature vertical-cavity surface-emitting lasers at 4 μm with GaSb-based type-II quantum wells. Appl. Phys. Lett. 110, 71104 (2017). https://doi.org/10.1063/1.4975813.
  • [25] Palmer, C., Stavrinou, P. & Whitehead, M. Mid-infrared (λ∼2–6 μm) measurements of the refractive indices of GaAs and AlAs. Semicond. Sci. Technol. 17, 1189 (2002). https://doi.org/10.1088/0268-1242/17/11/310.
  • [26] Asano, T., Hu, C., Zhang, Y., Liu, M., Campbell, J. C. & Madhukar, A. Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm). IEEE J. Quantum Electron. 46, 1484-1491 (2010). https://doi.org/10.1109/JQE.2010.2052351.
  • [27] Perner, L. W. et al. Simultaneous measurement of mid-infrared refractive indices in thin-film heterostructures: Methodology and results for GaAs/AlGaAs. Phys. Rev. Res. 5, 33048 (2023). https://doi.org/10.1103/PhysRevResearch.5.033048.
  • [28] Suwito, G. R., Mojaver, H. R. & Quitoriano, N. J. Air Gap/InP Distributed Bragg Reflectors for Mid-Infrared Applications. in OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF) (eds. Caspani Tauke-Pedretti, A., Leo, F. & Yang, B. L.) M4G.4 (Optica Publishing Group, 2020). https://doi.org/10.1364/NOMA.2020.NoM4G.4.
  • [29] Yoshinaga, H. et al. Mid-Infrared quantum cascade laser integrated with distributed bragg reflector. Proc. SPIE 9755, 97552V (2016). https://doi.org/10.1117/12.2212332.
  • [30] Hashimoto, J. I. et al. Mid-infrared quantum cascade laser integrated with distributed bragg reflector. SEI Tech. Rev. 85, 59-64 (2017). https://sumitomoelectric.com/sites/default/files/2020-12/download_documents/85-12.pdf.
  • [31] Cheng, L. & Choa, F.-S. Design and operation of mid-IR integrated DBR tunable lasers. in Proc. SPIE 7953, 79531P (2011). https://doi.org/10.1117/12.875680.
  • [32] Sprengel, S. et al. Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells. Appl. Phys. Lett. 106, 151102 (2015). https://doi.org/10.1063/1.4917282.
  • [33] Boehm, G. et al. Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3μm. J. Cryst. Growth 301-302, 941-944 (2007). https://doi.org/https://doi.org/10.1016/j.jcrysgro.2006.11.098.
  • [34] Yue, A.-W., Wang, R.-F., Xiong, B. & Shi, J. Fabrication of a 10 Gb/s InGaAs/inp avalanche photodiode with an AlGaInAs/InP distributed Bragg reflector. Chinese Phys. Lett. 30, 38501 (2013). https://doi.org/10.1088/0256-307X/30/3/038501.
  • [35] Duan, X., Huang, Y., Shang, Y., Wang, J. & Ren, X. High-efficiency dual-absorption InGaAs/InP photodetector incorporating GaAs/ AlGaAs Bragg reflectors. Opt. Lett. 39, 2447-2450 (2014). https://doi.org/10.1364/OL.39.002447.
  • [36] Mi, J. et al. Fabrication of InGaAs/InP DBR laser with butt-coupled passive waveguide utilizing selective wet etching. Proc. SPIE 9267, 92670Z (2014). https://doi.org/10.1117/12.2071526.
  • [37] Hofmann, W. High-speed buried tunnel junction vertical-cavity surface-emitting lasers. IEEE Photon. J. 2, 802-815 (2010). https://doi.org/10.1109/JPHOT.2010.2055554.
  • [38] Zhang, B. et al. High performance InGaAs/InP single-photon avalanche diode using DBR-metal reflector and backside microlens. J. Light. Technol. 40, 3832-3838 (2022). https://doi.org/10.1109/JLT.2022.3153455.
  • [39] Todeschini, M., Bastos da Silva Fanta, A., Jensen, F., Wagner, J. B. & Han, A. Influence of Ti and CR adhesion layers on ultrathin Au films. ACS Appl. Mater. Interfaces 9, 37374-37385 (2017). https://doi.org/10.1021/acsami.7b10136.
  • [40] Motyka, M. et al. Fourier transformed photoreflectance and photoluminescence of mid infrared GaSb-based type II quantum wells. Appl. Phys. Express 2, 126505 (2009). https://doi.org/10.1143/APEX.2.126505.
  • [41] Motyka, M. & Misiewicz, J. Fast differential reflectance spectroscopy of semiconductor structures for infrared applications by using Fourier transform spectrometer. Appl. Phys. Express 3, 112401 (2010). https://doi.org/10.1088/0957-0233/22/12/125601.
  • [42] Motyka, M. et al. Fourier-transformed photoreflectance and fast differential reflectance of HgCdTe layers. The issues of spectral resolution and Fabry-Perot oscillations. Meas. Sci. Technol. 22, 125601 (2011). https://doi.org/10.1088/0957-0233/22/12/125601.
  • [43] Hosea, T. J. C., Merrick, M. & Murdin, B. N. A new Fourier transform photo-modulation spectroscopic technique for narrow band-gap materials in the mid- to far-infra-red. Phys. Status Solidi 202, 1233-1243 (2005). https://doi.org/10.1002/pssa.200460908.
  • [44] Griffiths, P. & Haseth, J. Fourier Transform Infrared Spectrometry, Second Edition. (Wiley, 2007).
  • [45] Gębski, M. et al. Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror. Opt. Express 23, 11674-11686 (2015). https://doi.org/10.1364/OE.23.011674.
  • [46] Kaliteevski, M. et al. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 76, 165415 (2007). https://doi.org/10.1103/PhysRevB.76.165415.
  • [47] Ivey, D. G. & Jian, P. Metallurgy of ohmic contacts to InP. Can. Metall. Q. 34, 85-113 (1995). https://doi.org/10.1179/cmq.1995.34.2.85.
  • [48] Stareev, G., Künzel, H. & Dortmann, G. A controllable mechanism of forming extremely low‐resistance nonalloyed ohmic contacts to group III‐V compound semiconductors. J. Appl. Phys. 74, 7344-7356 (1993). https://doi.org/10.1063/1.355002.
  • [49] Katz, A. et al. Pt/Ti/p‐In0.53Ga0.47As low‐resistance nonalloyed ohmic contact formed by rapid thermal processing. Appl. Phys. Lett. 54, 2306-2308 (1989). https://doi.org/10.1063/1.101110.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c5ab5a9-967e-4939-90d8-58663be05110
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.