PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polypropylene – zinc oxide nanorod hybrid material for applications in separation processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid filter material was obtained via modification of polypropylene (PP) nonwoven with nanosize zinc oxide particles of a high aspect ratio. Modification was conducted as a three-step process, a variant of hydrothermal method used for synthesis of nano-ZnO, adopted for coating three dimensional polymeric nonwoven filters. The process consisted of plasma treatment of nonwoven to increase its wettability, deposition of ZnO nanoparticles and low temperature hydrothermal growth of ZnO rods. The modified nonwovens were investigated by a high resolution scanning electron microscopy (HR-SEM). It has been found that the obtained hybrid filters offer a higher filtration efficiency, in particular for so called most penetrating particle sizes.
Rocznik
Strony
393--403
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska Str. 141, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska Str. 141, 02-507 Warsaw, Poland
  • aculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego Str. 1, 00-645 Warsaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska Str. 141, 02-507 Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska Str. 141, 02-507 Warsaw, Poland
Bibliografia
  • 1. Ahamed M., AlSalhi M.S., Siddiqui M.K.J., 2010. Silver nanoparticle applications and human health. Clin. Chim. Acta, 411, 1841–1848. DOI: 10.1016/j.cca.2010.08.016.
  • 2. Apalangya V., Rangari V., Tiimob B., Jeelani S., Samuel T., 2014. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl. Surf. Sci., 295, 108–114. DOI: 10.1016/j.apsusc.2014.01.012.
  • 3. Ates T., Tatar C., Yakuphanoglu F., 2013. Preparation of semiconductor ZnO powders by sol–gel method: Humidity sensors. Sens. Actuators A: Phys., 190, 153–160. DOI: 10.1016/j.sna.2012.11.031.
  • 4. Baek S.-H., Kim S.-B., Shin J.-K., Kim J. H., 2012. Preparation of hybrid silicon wire and planar solar cells having ZnO antireflection coating by all-solution processes. Sol. Energy Mater. Sol. Cells, 96, 251–256. DOI: 10.1016/j.solmat.2011.10.007.
  • 5. Ben-Sasson M., Lu X., Bar-Zeev E., Zodrow K.R., Nejati S., Qi G., Elimelech M., 2014. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res., 62, 260–270. DOI: 10.1016/j.watres.2014.05.049.
  • 6. Chang Q., Zhou J., Wang Y., Liang J., Zhang X., Cerneaux S., Dong Y., 2014. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion. J. Membr. Sci., 456, 128–133. DOI: 10.1016/j.memsci.2014.01.029.
  • 7. Chen K.J., Hung F.Y., Chang S.J., Young S.J., 2009. Optoelectronic characteristics of {UV} photodetector based on ZnO nanowire thin films. J. Alloys Compd., 479, 674–677. DOI: 10.1016/j.jallcom.2009.01.026.
  • 8. Chen R., Bayon Y., Hunt J.A., 2012. Preliminary study on the effects of ageing cold oxygen plasma treated PET/PP with respect to protein adsorption. Colloids Surf., B: Biointerfaces, 96, 62–68. DOI: 10.1016/j.colsurfb.2012.03.019
  • 9. Choi H.-S., Vaseem M., Kim S.G., Im Y.-H., Hahn Y.-B., 2012. Growth of high aspect ratio ZnO nanorods by solution process: Effect of polyethyleneimine. J. Solid State Chem., 189, 25–31. DOI: 10.1016/j.jssc.2011.12.008.
  • 10. Coen M.C., Dietler G., Kasas S., Gröning P., 1996. {AFM} measurements of the topography and the roughness of {ECR} plasma treated polypropylene. Appl. Surf. Sci., 103, 27–34. DOI: 10.1016/0169-4332(96)00461-8.
  • 11. Colmenares J.C., Kuna E., Jakubiak S., Michalski J., Kurzydłowski K.J., 2015. Polypropylene nonwoven filter with nanosized ZnO rods: Promising hybrid photocatalyst for water purification. Appl. Catal. B: Environ., 170–171, 273–282. DOI: 10.1016/j.apcatb.2015.01.031.
  • 12. Cruz M.C., Ruano G., Wolf M., Hecker D., Vidaurre E.C., Schmittgens R., Rajal V.B., 2014. Plasma deposition of silver nanoparticles on ultrafiltration membranes: Antibacterial and anti-biofouling properties. Chem. Eng. Res. Des., 94, 524-537. DOI: 10.1016/j.cherd.2014.09.014.
  • 13. Farrukh M.A., 2012. Advanced aspects of spectroscopy. InTech. DOI: 10.5772/2757.
  • 14. Hossain F., Perales-Perez O.J., Hwang S., Román F., 2014. Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Sci. Total Environ., 466–467, 1047–1059. DOI: 10.1016/j.scitotenv.2013.08.009.
  • 15. İkizler B., Peker S.M., 2014. Effect of the seed layer thickness on the stability of ZnO nanorod arrays. Thin Solid Films, 558, 149–159. DOI: 10.1016/j.tsf.2014.03.019.
  • 16. Ivanova E.P., Hasan J., Webb H.K., Truong V.K., Watson G.S., Watson J.A., Crawford R.J., 2012. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small, 8, 2489–2494. DOI: 10.1002/smll.201200528.
  • 17. Jackiewicz A., Podgórski A., Gradon L., Michalski J., 2013. Nanostructured media to improve the performance of fibrous filters. Kona Powder Part. J., 30, 244–255. DOI: 10.14356/kona.2013023.
  • 18. Jaisai M., Baruah S., Dutta J., 2012. Paper modified with ZnO nanorods – antimicrobial studies. Beilstein J. Nanotechnol., 3, 684–691. DOI: 10.3762%2Fbjnano.3.78.
  • 19. Jaleh B., Parvin P., Wanichapichart P., Saffar A.P., Reyhani A., 2010. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by {O2} plasma. Appl. Surf. Sci., 257, 1655–1659. DOI: 10.1016/j.apsusc.2010.08.117.
  • 20. Kaegi R., Sinnet B., Zuleeg S., Hagendorfer H., Mueller E., Vonbank R., Burkhardt M., 2010. Release of silver nanoparticles from outdoor facades. Environ. Pollut., 158, 2900–2905. DOI: 10.1016/j.envpol.2010.06.009.
  • 21. Kenanakis, G., Vernardou, D., Katsarakis, N., 2012. Light-induced self-cleaning properties of ZnO nanowires grown at low temperatures. Appl. Catal. A: General, 411–412(0), 7–14. DOI: 10.1016/j.apcata.2011.09.041
  • 22. Kwon Y. Bin, Shin S.W., Lee H.-K., Lee J.Y., Moon J.-H., Kim J.H., 2011. Formation of ZnO thin films consisting of nano-prisms and nano-rods with a high aspect ratio by a hydrothermal technique at 60 °C. Curr. Appl Phys., 11, S197 – S201. DOI: 10.1016/j.cap.2010.11.086.
  • 23. Li M., Lin D., Zhu L., 2013. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ. Pollut., 173, 97–102. DOI: 10.1016/j.envpol.2012.10.026.
  • 24. Li Q., Mahendra S., Lyon D.Y., Brunet L., Liga M.V, Li D., Alvarez P.J.J., 2008. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res., 42, 4591–4602. DOI: 10.1016/j.watres.2008.08.015.
  • 25. Li Y.P., Shi W., Li S.Y., Lei M.K., 2012. Transition of water adhesion on superhydrophobic surface during aging of polypropylene modified by oxygen capacitively coupled radio frequency plasma. Surf. Coat. Technol., 213, 139–144. DOI: 10.1016/j.surfcoat.2012.10.037.
  • 26. Minh V., Tuan L.A., Huy T.Q., Hung V.N., Quy N. Van., 2013. Enhanced {NH3} gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci., 265, 458–464. DOI: 10.1016/j.apsusc.2012.11.028.
  • 27. Nayeri F.D., Soleimani E.A., Salehi F., 2013. Synthesis and characterization of ZnO nanowires grown on different seed layers: The application for dye-sensitized solar cells. Renewable Energy, 60, 246–255. DOI: 10.1016/j.renene.2013.05.006.
  • 28. Paisoonsin S., Pornsunthorntawee O., Rujiravanit R., 2013. Preparation and characterization of ZnO-deposited DBD plasma-treated {PP} packaging film with antibacterial activities. Appl. Surf. Sci., 273, 824–835. DOI: 10.1016/j.apsusc.2013.03.026.
  • 29. Pishbin F., Mouriño V., Gilchrist J.B., McComb D.W., Kreppel S., Salih V., Boccaccini A.R., 2013. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater., 9, 7469–7479. DOI: 10.1016/j.actbio.2013.03.006.
  • 30. Podgórski A., Bałazy A., Gradoń L., 2006. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci., 61, 6804–6815. DOI: 10.1016/j.ces.2006.07.022.
  • 31. Pogodin S., Hasan J., Baulin V.A., Webb H.K., Truong V.K., Nguyen T.H.P., Ivanova E.P., 2013. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys. J., 104, 835–840. DOI: 10.1016/j.bpj.2012.12.046.
  • 32. Sutherland K., 2011. Filtration markets: The European market for filtration equipment. Filtration + Separation, 48, 32–35. DOI: 10.1016/S0015-1882(11)70084-2.
  • 33. Tam K.H., Djurišić A.B., Chan C.M.N., Xi Y.Y., Tse C.W., Leung Y.H., Au D.W.T., 2008. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films, 516, 6167–6174. DOI: 10.1016/j.tsf.2007.11.081.
  • 34. Wanke C.H., Feijó J.L., Barbosa L.G., Campo L.F., de Oliveira R.V. B., Horowitz F., 2011. Tuning of polypropylene wettability by plasma and polyhedral oligomeric silsesquioxane modifications. Polymer, 52, 1797–1802. DOI: 10.1016/j.polymer.2011.01.064.
  • 35. Yin M., Liu M., Liu S., 2014. Diameter regulated ZnO nanorod synthesis and its application in gas sensor optimization. J. Alloys Compd., 586, 436–440. DOI: 10.1016/j.jallcom.2013.10.081.
  • 36. Zhang D., Chen L., Zang C., Chen Y., Lin H., 2013. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydr. Polym., 92, 2088–2094. DOI: 10.1016/j.carbpol.2012.11.100.
  • 37. Zhang H., Chen B., Jiang H., Wang C., Wang H., Wang X., 2011. A strategy for ZnO nanorod mediated multimode cancer treatment. Biomaterials, 32, 1906–1914. DOI: 10.1016/j.biomaterials.2010.11.027.
  • 38. Zhou K., Dong C., Zhang X., Shi L., Chen Z., Xu Y., Cai H., 2015. Preparation and characterization of nanosilver-doped porous hydroxyapatite scaffolds. Ceram. Int., 41(1, Part B), 1671–1676. DOI: 10.1016/j.ceramint.2014.09.108
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c5a6755-5244-42b8-a28a-73711a7e57d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.