Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Syr Darya River’s lower reaches of floodplain geosystems face growing environmental pressures, necessitating a thorough understanding of their vulnerability on which this study focuses, emphasising the role of natural and climatic factors. The research analyses the correlations and impacts of elevation, soil density, precipitation, air temperature, and normalised difference vegetation index (NDVI) on environmental vulnerability. The results indicate a strong positive correlation between elevation, precipitation, air temperature, and environmental vulnerability, with NDVI also playing a significant role. The study employs principal components analysis to further explore these relationships and generates an integrated vulnerability map, highlighting vulnerable areas, particularly near Kyzylorda city. The map also aligns with different land cover types, emphasising the dominant influence of environmental and climatic factors, especially maximum air temperature, precipitation, and elevation, on environmental vulnerability. The research concludes that the integrated vulnerability map serves as a valuable tool for guiding environmental management and conservation strategies, enabling targeted interventions and sustainable practices in areas of high vulnerability. The study’s methodology and findings offer crucial insights for effective environmental management and conservation in floodplain geosystems, promoting informed decision-making for sustainable development in the region.
Wydawca
Czasopismo
Rocznik
Tom
Strony
176--183
Opis fizyczny
Bibliogr. 48 poz., mapa, rys., tab., wykr.
Twórcy
autor
- Eurasian National University, Department of Physical and Economic Geography, Kanysh Satbaev St 2, 010000, Astana, Kazakhstan
autor
- Al-Farabi Kazakh National University, Faculty of Geography and Environmental Management, Department of Geography, Land Management and Cadastre, 71 Al-Farabi Ave, 050040, Almaty, Kazakhstan
Bibliografia
- Abatzoglou, J.T. et al. (2018) “TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015,” Scientific Data, 5(1). Available at: https://doi.org/10.1038/sdata.2017.191.
- Amani, M. et al. (2020) “Google Earth Engine Cloud computing platform for remote sensing big data Applications: A comprehensive review,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, pp. 5326–5350. Available at: https://doi.org/10.1109/jstars.2020.3021052.
- Anchita, et al. (2021) “Health impact of drying Aral Sea: One health and socio-economical approach,” Water, 13(22), 3196. Available at: https://doi.org/10.3390/w13223196.
- Anderson, R., Bayer, P.E. and Edwards, D. (2020) “Climate change and the need for agricultural adaptation,” Current Opinion in Plant Biology, 56, pp. 197–202. Available at: https://doi.org/10.1016/j.pbi.2019.12.006.
- Aralova, D., Gafurov, D. and Toderich, K. (2018) “NDVI-based monitoring long-term vegetation change dynamics in the drylands of Central Asia,” in D. Egamberdieva, M. Öztürk (eds.) Vegetation of Central Asia and Environs. Cham: Springer, pp. 49–71. Available at: https://doi.org/10.1007/978-3-319-99728-5_3.
- Arora, R. et al. (2012) “Stochastic optimization for PCA and PLS,” 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 861–868. Available at: https://doi.org/10.1109/allerton.2012.6483308.
- Asarin, A.E., Kravtsova, V.I. and Mikhailov, V.N. (2010) “Amudarya and Syrdarya rivers and their deltas,” in A.G. Kostianoy, A.N. Kosarev (eds.) The Aral Sea environment. Berlin–Heidelberg: Springer. pp. 101–121. Available at: https://doi.org/10.1007/698_2009_8.
- Ashimova, B. et al. (2023) “Environmental hazards of the railway infrastructure of Kazakhstan,” Sustainability, 15(2), 1321. Available at: https://doi.org/10.3390/su15021321.
- Baranovskaya, E.I., Pit’eva, K.E. and Orolbaeva, L.E. (2021) “Conditions for forming groundwater in artesian basins of the intermountain type,” Moscow University Geology Bulletin, 76(5), pp. 578–588. Available at: https://doi.org/10.3103/s0145875221050045.
- Baranowski, E. et al. (2020) “Pastoral farming in the Ili Delta, Kazakhstan, under decreasing water inflow: An economic assessment,” Agriculture, 10(7), 281. Available at: https://doi.org/10.3390/agriculture10070281.
- Bissenbayeva, S. et al. (2021) “Long-term variations in runoff of the Syr Darya River Basin under climate change and human activities,” Journal of Arid Land, 13(1), pp. 56–70. Available at: https://doi.org/10.1007/s40333-021-0050-0.
- Buchhorn, M. et al. (2020) “Copernicus global land cover layers– Collection 2,” Remote Sensing, 12(6), 1044. Available at: https://doi.org/10.3390/rs12061044.
- Buckley, S.M. et al. (2020) NASADEM. Pasadena: National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology. https://lpdaac.usgs.gov/documents/592/NASADEM_User_Guide_V1.pdf (Accessed: April 18, 2024).
- Bychkov, I.V. et al. (2018) “Water protection zoning as an instrument of preservation for Lake Baikal,” Water, 10(10), 1474. Available at: https://doi.org/10.3390/w10101474.
- Cherkashin, A.K. (2021) “Geosystems and the geographical environment,” Geography and Natural Resources, 42(1), pp. 1–9. Available at: https://doi.org/10.1134/s1875372821010066.
- Chernykh, D. (2022) “Basin approach as a tool for landscape assessment and planning,” Current Landscape Ecology Reports, 7(2), pp. 15–23. Available at: https://doi.org/10.1007/s40823-022-00069-4.
- Chestin, I.E. et al. (2017) “Tiger re-establishment potential to former Caspian tiger (Panthera tigris virgata) range in Central Asia,” Biological Conservation, 205, pp. 42–51. Available at: https://doi.org/10.1016/j.biocon.2016.11.014.
- Choudhary, K., Boori, M.S. and Kupriyanov, A. (2018) “Spatial modelling for natural and environmental vulnerability through remote sensing and GIS in Astrakhan, Russia,” The Egyptian Journal of Remote Sensing and Space Science, 21(2), pp. 139–147. Available at: https://doi.org/10.1016/j.ejrs.2017.05.003.
- Crétaux, J.-F. et al. (2015) “Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin,” Environmental Research Letters, 10(1), 015002. Available at: https://doi.org/10.1088/1748-9326/10/1/015002.
- Dimeyeva, L. et al. (2023) “Plant diversity and distribution patterns of Populus pruinosa Schrenk (Salicaceae) floodplain forests in Kazakhstan,” Diversity, 15(7), 797. Available at: https://doi.org/10.3390/d15070797.
- Didan, K. (2021) MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061. NASA EOSDIS Land Processes Distributed Active Archive Center. Available at: https://doi.org/10.5067/MODIS/MOD13Q1.061.
- Frolova, M. (2019) “From the Russian/Soviet landscape concept to the geosystem approach to integrative environmental studies in an international context,” Landscape Ecology, 34(7), pp. 1485–1502. Available at: https://doi.org/10.1007/s10980-018-0751-8.
- Havrdová, A., Douda, J. and Doudová, J. (2023) “Threats, biodiversity drivers and restoration in temperate floodplain forests related to spatial scales,” Science of The Total Environment, 854, 158743. Available at: https://doi.org/10.1016/j.scitotenv.2022.158743.
- Hengl, T. (2018) “Soil bulk density (fine earth) 10 x kg/m-cubic at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution. Data set (v02),” Zenodo. Available at: https://doi.org/10.5281/zenodo.2525665.
- Hengl, T. and Parente, L. (2022) “Open monthly precipitation in mm at 1 km resolution (multisource average) based on SM2RAIN-ASCAT 2007-2021, CHELSA Climate and WorldClim. Data set,” Zenodo. Available at: https://doi.org/10.5281/zenodo.6458580.
- Henríquez-Dole, L. et al. (2018) “Integrating strategic land use planning in the construction of future land use scenarios and its performance: The Maipo River Basin, Chile,” Land Use Policy, 78, pp. 353–366. Available at: https://doi.org/10.1016/j.land-usepol.2018.06.045.
- Issanova, G. et al. (2022) “Soil salinisation as a land degradation process in the dried bed of the North-eastern Aral Sea, Kazakhstan,” Arabian Journal of Geosciences, 15, 1055. Available at: https://doi.org/10.1007/s12517-022-09627-w.
- Issayeva, A. et al. (2021) “Comparative assessment of geomorphological and landscape features around the Small Aral Sea,” Journal of Ecological Engineering, 22(10), pp. 73–84. Available at: https://doi.org/10.12911/22998993/142187.
- Izakovičová, Z. et al. (2019) “The integrated approach to landscape management – Experience from Slovakia,” Sustainability, 11(17), 4554. Available at: https://doi.org/10.3390/su11174554.
- Khromykh, V.V. and Khromykh, O.V. (2020) “GIS-based study of landscape structure and land use within the river valleys in the Southern Tomsk Region: Spatial-temporal aspects,” in A.V. Khoroshev, K.N. Dyakonov (eds.) Landscape patterns in a range of spatio-temporal scales, pp. 405–420. Available at: https://doi.org/10.1007/978-3-030-31185-8_25.
- Kozhokulov, S. et al. (2019) “Assessment of tourism impact on the socio-economic spheres of the Issyk-Kul Region (Kyrgyzstan),” Sustainability, 11(14), 3886. Available at: https://doi.org/10.3390/su11143886.
- Kuanyshova, S.E. et al. (2017) “Bioraznoobraziye flory poymy i del’ty reki Syrdar’i [Flora biodiversity in flood plain and delta of the Syrdarya River],” Nauka i mir, 4(44), pp. 10–14. Available at: https://scienceph.ru/f/science_and_world_no_4_44_april_vol_ii.pdf (Accessed: April 14, 2023).
- Kuderin, A. et al. (2019) “Landscape planning of the Kazaly irrigation array of Southern Kazakhstan,” European Journal of Geography, 10(1) Available at: https://www.eurogeojournal.eu/index.php/egj/article/view/61 (Accessed: July 22, 2023).
- Kuz’mina, Zh.V., Shinkarenko, S.S. and Solodovnikov, D.A. (2019) “Main tendencies in the dynamics of floodplain ecosystems and landscapes of the lower reaches of the Syr Darya River under modern changing conditions,” Arid Ecosystems, 9(4), pp. 226–236. Available at: https://doi.org/10.1134/s207909611904005x.
- Linke, S. et al. (2019) “Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution,” Scientific Data, 6(1). Available at: https://doi.org/10.1038/s41597-019-0300-6.
- Löw, F. et al. (2018) “Mapping cropland abandonment in the Aral Sea Basin with MODIS time series,” Remote Sensing, 10(2), 159. Available at: https://doi.org/10.3390/rs10020159.
- Lugli, F. (2021) “A strontium isoscape of Italy for provenance studies,” Chemical Geology, 587, 120624. Available at: https://doi.org/10.1016/j.chemgeo.2021.120624.
- Meadows, M., Jones, S. and Reinke, K. (2024) “Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments,” International Journal of Digital Earth, 17(1). Available at: https://doi.org/10.1080/17538947.2024.2308734.
- Ozgeldinova, Z.O. et al. (2019) “Assessment of human impacts on geosystems of Sarysu River basin,” Fresenius Environmental Bulletin, 28(8), pp. 6019–6026.
- Pereladova, O. (2013) “Restoration of Bukhara deer (Cervus elaphus bactrianus Lydd.) in Central Asia in 2000-2011,” Deer Specialist Group Newsletter, 25, pp. 19–30.
- Prykhodko, M.M. et al. (2019) “Application of the geographic information system technologies in the geosystem planning process,” in 18th International Conference on Geoinformatics – Theoretical and Applied Aspects. Kyiv, Ukraine 13–16 May 2019, pp. 1–5. Kyiv: European Association of Geoscientists & Engineers.
- Rzymski, P. et al. (2019) “Pollution with trace elements and rare-earth metals in the lower course of Syr Darya River and Small Aral Sea, Kazakhstan,” Chemosphere, 234, pp. 81–88. Available at: https://doi.org/10.1016/j.chemosphere.2019.06.036.
- Samarkhanov, K. et al. (2019) “The spatial and temporal land cover patterns of the Qazaly irrigation zone in 2003–2018: The case of Syrdarya River’s lower reaches, Kazakhstan,” Sustainability, 11(15), p. 4035. Available at: https://doi.org/10.3390/su11154035.
- Surya, B. et al. (2020) “Land use change, spatial interaction, and sustainable development in the metropolitan urban areas, South Sulawesi Province, Indonesia,” Land, 9(3), 95. Available at: https://doi.org/10.3390/land9030095.
- Vieira, R.M.S.P. et al. (2023) “Socio-environmental vulnerability to drought conditions and land degradation: An assessment in two northeastern Brazilian river basins,” Sustainability, 15(10), 8029. Available at: https://doi.org/10.3390/su15108029.
- WWF (2007-2015) Biodiversity preservation and integrated river basin development in the Syrdaria River Valley. Project start date: 2007 – End date: 2015. World Wildlife Fund.
- Xu, C. et al. (2024) “Spatiotemporal variations of eco-environmental vulnerability in Shiyang River Basin, China,” Ecological Indicators, 158, 111327. Available at: https://doi.org/10.1016/j.ecolind.2023.111327.
- Yamashkin, S. et al. (2018) “Using ensemble systems to study natural processes,” Journal of Hydroinformatics, 20(4), pp. 753–765. Available at: https://doi.org/10.2166/hydro.2018.076.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c57747c-2173-4a12-8860-dbdee6efee5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.