PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anisotropic elastic least-squares reverse time migration with density variations in vertical transverse isotropic media

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Elastic least-squares reverse time migration (ELSRTM) has the potential to provide higher-quality migration images related to the lithology and fluid by imaging multi-component seismic data than conventional elastic reverse time migration (ERTM). Oil and gas are widely stored in fractures and sedimentary rocks. The sedimentary rocks and the rocks with fractures will produce anisotropy. The anisotropy effect should be corrected in migration. In order to correct the anisotropic effect to the images of ELSRTM, a new anisotropic ELSRTM scheme is developed to image the multi-component seismic data in vertical transverse isotropic (VTI) media. This new ELSRTM method can invert high-quality images and correct the anisotropic effect in VTI media. Many ELSRTM methods assume that the density is constant. However, the constant-density assumption will generate false migration results when the density of media is variation. We derive the elastic VTI de-migration operator in the media with density variations based on Born approximation. The adjoint state equations and gradient formulas with respect to medium images in VTI media with density variations are also derived by the adjoint state method. Using the new elastic de-migration operator, adjoint state equations, and gradients in VTI media with density variations, we can produce high-resolution subsurface elastic reflectivity images. Numerical examples from the graben VTI model and modified HESS VTI model demonstrate that the proposed ELSRTM can not only generate the images with high quality but also correct the anisotropic effect in VTI media with density variations.
Czasopismo
Rocznik
Strony
67--83
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • College of Electrical & Information, Hubei University of Automotive Technology, Shiyan 442002, China
autor
  • Hubei Subsurface Multi-Scale Imaging Key Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
autor
  • First Institute of Oceanography, Ministry of Natural Resources, National Laboratory for Marine Science and Technology, Qingdao 266237, China
autor
  • Geophysical Research Institute, Sinopec Shengli Oilfield Company, Dongying 257000, China
autor
  • Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Cooperative Innovation Center of Unconventional Oil and Gas (Ministry of Education & Hubei Province), Yangtze University, Wuhan 430100, China
autor
  • Sinopec Geophysical Research Institute, Nanjing 211103, China
Bibliografia
  • 1. Dai W, Schuster GT (2013) Plane-wave least-squares reverse-time migration. Geophysics 78(4):S165-S177
  • 2. Dellinger J, Etgen J (1990) Wave-field separation in two-dimensional anisotropic media. Geophysics 55:914-919
  • 3. Dong S, Cai J, Guo M, Suh S, Zhang Z, Wang B and Li Z (2012) Leastsquares reverse time migration towards true amplitude imaging and improving the resolution: 82th Annual international meeting, SEG. Expanded abstracts, pp. 1-5.
  • 4. Du QZ, Zhu Y, Ba J (2012) Polarity reversal correction for elastic reverse time migration. Geophysics 77(2):S31-S41
  • 5. Feng ZC, Schuster GT (2017) Elastic least-squares reverse time migration. Geophysics 82(2):S143-S157
  • 6. Gazdag J (1978) Wave equation migration with the phase-shift method. Geophysics 43:1342-1351
  • 7. Han JG, Lü QT, Gu BL, Yan JY, Zhang H (2020) 2D anisotropic multicomponent Gaussian-beam migration under complex surface conditions. Geophysics 85(2):S89-S102
  • 8. Han JG, Lü QT, Zhang H, Gu BL, Liu ZW (2022) PS-wave angledomain imaging with Gaussian beam summation in 2-D TTI Media. IEEE Geosci Rem Sens Lett 19:1-5
  • 9. Hill NR (1990) Gaussian beam migration. Geophysics 55:1416-1428
  • 10. Liu Q, Tromp J (2006) Finite-frequency kernels base on adjoint methods. Bull Seismol Soc Am 96:2383-2397
  • 11. Liu S, Yan Z, Zhu W, Han B, Gu H, Hu S (2021) An illumination-compensated Gaussian beam migration for enhancing subsalt imaging. Geophys Prospect 69:1433-1440
  • 12. Nocedal J, Wright S (2006) Numerical optimization Springer verlag, 2nd edn. Operations Research and Financial Engineering, New York
  • 13. Plessix RE (2006) A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys J Int 167:495-503
  • 14. Qu Y, Huang J, Li Z, Guan Z, Li J (2017) Attenuation compensation in anisotropic least-squares reverse time migration. Geophysics 82:S411-S423
  • 15. Qu Y, Li J, Huang J, Li Z (2018) Elastic least-squares reverse time migration with velocities and density perturbation. Geophys J Int 212:1033-1056
  • 16. Ren Z, Liu Y, Sen MK (2017) Least-squares reverse time migration in elastic media. Geophys J Int 208:1103-1125
  • 17. Schneider WA (1978) Integral formulation for migration in two and three dimensions. Geophysics 43:49-76
  • 18. Sun M, Dong L, Yang J, Huang C, Liu Y (2018) Elastic least-squares reverse time migration with density variations. Geophysics 83:S533-S547
  • 19. Tan S, Huang LJ (2014) Least-squares reverse-time migration with a wavefield separation imaging condition and updated source wavefields. Geophysics 79(5):S195-S205
  • 20. Tarantola A (1984) Linearized inversion of seismic reflection data. Geophys Prospect 32:998-1015
  • 21. Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51:1893-1903
  • 22. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954-1966
  • 23. Virieux J (1984) SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 49:1933-1957
  • 24. Wang WL, McMechan GA (2015) Vector-based elastic reverse time migration. Geophysics 80(6):S245-S258
  • 25. Wang BL, Gao JH, Chen WC, Zhang HL (2012) Efficient boundary storage strategies for seismic reverse time migration. Chin J Geophys 55:2412-2421 ((in Chinese))
  • 26. Whitmore ND (1983) Iterative depth migration by backward time propagation: 53th annual international meeting, SEG, Expanded abstracts, pp. 382-385.
  • 27. Wu RS, Aki K (1985) Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics 50:582-595
  • 28. Xie XB, Wu RS (2005) Multi-component prestack depth migration using the elastic screen method. Geophysics 70(1):S30-S37
  • 29. Yan J, Sava P (2008) Isotropic angle-domain elastic reverse-time migration. Geophysics 73(6):S229-S239
  • 30. Yang J, Liu Y, Dong L (2016) Least-squares reverse time migration in the presence of density variations. Geophysics 81(6):S497-S509
  • 31. Youn O, Zhou HW (2001) Depth imaging with multiples. Geophysics 66:246-255
  • 32. Zeng C, Dong SQ, Wang B (2014) Least-squares reverse time migration: inversion-based imaging toward true reflectivity. Lead Edge 33:962-968
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c53517e-fd88-43b2-81a9-8761fc3e41a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.