Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Therapeutic and surgical applications of focused ultrasound require monitoring of local temperature rises induced inside tissues. From an economic and practical point of view ultrasonic imaging techniques seem to be the most suitable for the temperature control. This paper presents an implementation of the ultrasonic echoes displacement estimation technique for monitoring of local temperature rise in tissue during its heating by focused ultrasound The results of the estimation were compared to the temperature measured with thermocouple. The obtained results enable to evaluate the temperature fields induced in tissues by pulsed focused ultrasonic beams using non-invasive imaging ultrasound technique.
Wydawca
Czasopismo
Rocznik
Tom
Strony
139--144
Opis fizyczny
Bibliogr. 10 poz., fot., rys., wykr.
Twórcy
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
- 1. Bamber J. C., Hill C. R., Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature, Ultrasound. Med. Biol.,5,149–157, 1979.
- 2. Bamber J. C., Hill C. R., King J. A., Acoustic properties of normal and cancerous human liver—II Dependence on tissue structure, Ultrasound Med. Biol., 7,135–144, 1981.
- 3. Guiot C., Cavalli R., Gaglioti P., Danelon D., Musacchio C., Trotta M., Todros T., Temperature monitoring using ultrasound contrast agents: in vitro investigation on thermal stability. Ultrasonics, 42, 927–930, 2004.
- 4. Haar G.ter, Therapeutic applications of ultrasound, Progress in Biophysics and Molecular Biology 93, 11-129, 2007.
- 5. Hynynen K., MRI-guided focused ultrasound treatments. Ultrasonics, 50, 221-229, 2010.
- 6. Kujawska T., Nowicki A., Lewin P. A., Determination of nonlinear medium parameter B/A using model assisted variable-length measurement approach, Ultrasonics, 51, 997-1005, 2011.
- 7. Kujawska T., Pulsed focused nonlinear acoustic fields from clinically relevant therapeutic sources in layered media: experimental data and numerical prediction results, Archives of Acoustics, 37, 3, 269, 278, 2012.
- 8. Liu H.-L., Li M.-L., Shih T.-C., Huang S.-M., Lu I.-Y., Lin D.-Y., Lin S.-M., Ju K.-C., Instantaneous frequency-based ultrasonic temperature estimation during focused ultrasound thermal therapy, Ultrasound in Med. & Biol., 35, 10, 1647-1661, 2009.
- 9. Miller N. R., Bamber J. C., Meaney P. M., Fundamental limitations of noninvasive temperature imaging by means of ultrasounds echo strain estimation. Ultrasound in Med. & Biol., 28, 10, 1319–1333, 2002.
- 10. Souchon R., Bouchoux G., Maciejko E., Lafon C., Cathignol D., Bertrand M., Chapelon J.-Y., Monitoring the formation of thermal lesions with heatinduced echo-strain imaging: a feasibility study, Ultrasound in Med. & Biol., 31, 2, 251–259, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c475be4-2b5d-47dd-aeb3-24ce2e2fe9ab