PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Sared: self-adaptive active queue management scheme for improving quality of service in network systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Considering the phenomenal growth of network systems, congestion remains a threat to the quality of the service provided in such systems; hence, research on congestion control is still relevant. The Internet research community regards active queue management (AQM) as an effective approach for addressing congestion in network systems. Most of the existing AQM schemes possess static drop patterns and lack a self-adaptation mechanism; as such they do not work well for networks where the traffic load fluctuates. This paper proposes a self-adaptive random early detection (SARED) scheme that smartly adapts its drop pattern based on a current network’s traffic load in order to maintain improved and stable performance. Under light- to moderate-load conditions, SARED operates in nonlinear modes in order to maximize utilization and throughput, while it switches to a linear mode in order to avoid forced drops and congestion under high-load conditions. Our conducted experiments revealed that SARED provides optimal performance regardless of the condition of the traffic load.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
251–266
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Umaru Musa Yar’adua University, Katsina, Nigeria
autor
  • Federal University Dutsin-Ma, Katsina, Nigeria
  • Federal University Dutsin-Ma, Katsina, Nigeria
Bibliografia
  • [1] Atzori L., Iera A., Morabito G.: The internet of things: A survey, Computer Networks, vol. 54(15), pp. 2787–2805, 2010.
  • [2] Bonald T., May M., Bolot J.C.: Analytic evaluation of RED performance. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), pp. 1415–1424, 2000.
  • [3] Braden B., Clark D., Crowcroft J., Davie B., et al.: Recommendations on Queue Management and Congestion Avoidance in the Internet. RFC2309, United States, April 1998, https://tools.ietf.org/html/rfc2309.
  • [4] Chaudhary P., Kumar S.: A Review of Comparative Analysis of TCP Variants for Congestion Control in Network, International Journal of Computer Applications, vol. 160(8), pp. 28–34, 2017.
  • [5] Cisco: Cisco Visual Networking Index: Forecast and Trends, 2017-2022. Cisco, https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf.
  • [6] Feng C.W., Huang L.F., Xu C., Chang Y.C.: Congestion Control Scheme Performance Analysis Based on Nonlinear RED, IEEE Systems Journal, vol. 11(4), pp. 2247–2254, 2017.
  • [7] Floyd S.: Recommendation on using the gentle variant of RED. http://www.icir .org/floyd/red/gentle.html.
  • [8] Floyd S., Gummadi R., Shenker S.: Adaptive RED: An Algorithm for Increasing the Robustness of RED’s Active Queue Management. Technical Report, UC, Berkeley, CA, 2001, https://www.icir.org/floyd/papers/adaptiveRed.pdf.
  • [9] Floyd S., Jacobson V.: Random early detection gateways for congestion avoidance, IEEE/ACM Transactions on Networking, vol. 1(4), pp. 397–413, 1993.
  • [10] Heinanen J., Baker F., Weiss W., Wroclawski J.: Assured forwarding PHB. RFC2597, June 1999, https://tools.ietf.org/html/rfc2597.
  • [11] Jacobson V.: Congestion avoidance and control, ACM SIGCOMM Computer Communication Review, vol. 25(1), pp. 157–187, 1995.
  • [12] Jain R.: Congestion control in computer networks: issues and trends, IEEE Network, vol. 4(3), pp. 24–30, 1990.
  • [13] Karmeshu S., Patel S., Bhatnagar S.: Adaptive mean queue size and its rate of change: Queue management with random dropping, Telecommunication Systems, vol. 65(2), pp. 287–295, 2017.
  • [14] Karthick G.S., Sridhar M., Pankajavalli P.B.: Internet of Things in Animal Healthcare (IoTAH): Review of Recent Advancements in Architecture, Sensing Technologies and Real-Time Monitoring, SN Computer Science, vol. 1(301), pp. 1–16, 2020.
  • [15] Korolkova A., Kulyabov D., Velieva T., Zaryadov I.: Essay on the study of the self-oscillating regime in the control system. In: Communications of the European Council for Modelling and Simulation, Caserta, Italy, pp. 473–480, 2019.
  • [16] May M., Bolot J., Diot C., Lyles B.: Reasons not to deploy RED. In: 1999 Seventh International Workshop on Quality of Service. IWQoS’99. (Cat. No.98EX354), pp. 260–262, 1999.
  • [17] Newton M., Kalman G.: Peer-to-Peer-Based Social Networks: A Comprehensive Survey, SN Computer Science, vol. 1(299), pp. 1–51, 2020.
  • [18] Patel S.: Performance analysis and modeling of congestion control algorithms based on active queue management. In: Proceedings of 2013 International Conference on Signal Processing and Communication (ICSC), pp. 449–454, 2013.
  • [19] Plasser E., Ziegler T., Reichl P.: On the non-linearity of the RED drop function. In: ICCC’02: Proceedings of the 15th International Conference on Computer Communication, pp. 515–534, 2002.
  • [20] Sharma N., Rajput S., Dwivedi A., Shrimali M.: P-RED: Probability Based Random Early Detection Algorithm for Queue Management in MANET. In: Advances in Computer and Computational Sciences. Advances in Intelligent Systems and Computing, vol. 554, pp. 637–643, Springer, Singapore, 2018.
  • [21] Systems C.: Congestion Avoidance Overview. https://www.cisco.com/c/en/us/ td/docs/ios/qos/configuration/guide/12 2sr/qos 12 2sr book/congestion avoid ance.html.
  • [22] Tang L., Tan Y.: Adaptive Queue Management Based On the Change Trend of Queue Size, KSII Transactions on Internet and Information Systems, vol. 13(3), pp. 1345–1362, 2019.
  • [23] Varghese B., Wang N., Nikolopoulos D.S., Buyya R.: Feasibility of Fog Computing. https://arxiv.org/pdf/1701.05451.pdf.
  • [24] Velieva T.R., Korolkova A.V., Kulyabov D.S., Abramov S.A.: Parametric study of the control system in the TCP network. In: Proceedings of 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 334–339, 2018.
  • [25] Zhang Y., Ma J., Wang Y., Xu C.: MRED: An Improved Nonlinear RED Algorithm. In: International Conference on Computer and Automation Engineering (ICCAE 2011), vol. 44, pp. 6–11, 2012.
  • [26] Zheng B., Atiquzzaman M.: DSRED: improving performance of active queue management over heterogeneous networks. In: ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240), vol. 8, pp. 2375–2379, 2001.
  • [27] Zhou K., Yeung K.L., Li V.O.K.: Nonlinear RED: A simple yet efficient active queue management scheme, Journal of Computer Networks, vol. 50, pp. 3784–3794, 2006.
Uwagi
PL
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c45436a-7419-46e9-ba2a-f6ba587e20f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.