PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An unsteady flow and melting heat transfer of a nanofluid over a stretching sheet embedded in a porous medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An unsteady flow and melting heat transfer of a nanofluid over a stretching sheet was numerically studied by considering the effect of chemical reaction and thermal radiation. The governing non-linear partial differential equations describing the flow problem are reduced to a system of non-linear ordinary differential equations using the similarity transformations and solved numerically using the Runge–Kutta–Fehlberg fourth–fifth order method. Numerical results for concentration, temperature and velocity profiles are shown graphically and discussed for different physical parameters. Effect of pertinent parameters on momentum, temperature and concentration profiles along with local Sherwood number, local skin-friction coefficient and local Nusselt number are well tabulated and discussed.
Rocznik
Strony
245--258
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
autor
  • Department of Mathematics, SJM Institute of Technology College Chitradurga-577502, Karnataka, INDIA
  • Department of Studies and Research in Mathematics, Kuvempu University Shankaraghatta-577 451, Shimoga, Karnataka, INDIA
  • Department of Studies and Research in Mathematics, Kuvempu University Shankaraghatta-577 451, Shimoga, Karnataka, INDIA
  • Department of Mathematics, JNN Collage of Engineering Shimoga, Karnataka, INDIA
Bibliografia
  • [1] Sakiadis B.C. (1961): Boundary layer behavior on continuous solid surfaces: I Boundary layer equations for two dimensional and axisymmetric flow, II. Boundary layer on a continuous flat surface. AICHE J., vol.7, pp.221-225.
  • [2] Crane L.J. (1970): Flow past a stretching plate. ZAMP, vol.21, pp.645-647.
  • [3] Gupta P.S. and Gupta A.S. (1977): Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng., vol.55, pp.744-746.
  • [4] Kumar K.G., Gireesha B.J., Manjunatha S. and Rudraswamy N.G. (2017): Effect of nonlinear thermal radiation on double-diffusive mixed convection boundary layer flow of viscoelastic nanofluid over a stretching sheet. Int. J. of Mech. and Mat. Eng., vol.12, No.1, pp.18.
  • [5] Kumar K.G., Gireesha B.J., Rudraswamy N.G. and Manjunatha S. (2017): Radiative heat transfers of Carreau fluid flow over a stretching sheet with fluid particle suspension and temperature jump. Results in Physics, vol.7, pp.3976-3983.
  • [6] Kumar K.G., Gireesha B.J. and Gorla R.S.R. (2018): Flow and heat transfer of dusty hyperbolic tangent fluid over a stretching sheet in the presence of thermal radiation and magnetic field. Int. J. of Mech. and Mat. Eng., vol.13, No.1, pp.1-11.
  • [7] Kumar K.G., Gireesha B.J., Ramesh G.K. and Rudraswamy N.G. (2018): Double-diffusive free convective flow of Maxwell nanofluid past a stretching sheet with nonlinear thermal radiation. Journal of Nanofluids, vol.7, No.3, pp.499-508.
  • [8] Krishnamurthy M.R., Kumar K.G., Gireesha B.J. and Rudraswamy N.G. (2018): MHD flow and heat transfer (PST and PHF) of dusty fluid suspended with alumina nanoparticles over a stretching sheet embedded in a porous medium under the influence of thermal radiation. Journal of Nanofluids, vol.7, No.3, pp.527-535.
  • [9] Kumar K.G., Rudraswamy N.G., Gireesha B.J. and Manjunatha S. (2017): Non-linear thermal radiation effect on Williamson fluid with particle-liquid suspension past a stretching surface. Results in Physics, vol.7, pp.3196-3202.
  • [10] Choi S.U.S. (1995): Enhancing thermal conductivity of fluids with nanoparticle. In: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, The ASME New York, FED, vol.231/MD vol.66, pp.99-105.
  • [11] Masuda H., Ebata A., Teramae K. and Hishinuma N. (1993): Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. T NetsuBussei, vol.7, pp.227-233.
  • [12] Buongiorno J. (2005): Convective transport in nanofluids. ASME J. Heat Transfer, vol.128, pp.240-250.
  • [13] Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transfer, vol.53, pp.2477-2483.
  • [14] Kumar K.G., Ramesh G.K., Gireesha B.J. and Gorla R.S.R. (2017): Characteristics of Joule heating and viscous dissipation on three-dimensional flow of Oldroyd B nanofluid with thermal radiation. Alexandria Engineering Journal, vol.57, No.3, pp.2139-2149. https://doi.org/10.1016/j.aej.2017.06.006.
  • [15] Kumar K.G., Gireesha B.J., Krishnamurthy M.R. and Prasannakumara B.C. (2018): Impact of convective condition on Marangoni convection flow and heat transfer in Casson nanofluid with uniform heat source sink. Journal of Nanofluids, vol.7, No.1, pp.108-114.
  • [16] Walker G. (2007): A world melting from the top down. Nature, vol.446, pp.718-721.
  • [17] Epstein M. and Cho D.H. (1976): Laminar film condensation on a vertical melting surface. ASME J. Heat Transfer, vol.98, pp.108-113.
  • [18] Kazmierczak M., Poulikakos D. and Pop I. (1986): Melting from a flat plate embedded in a porous medium in the presence of steady natural convection. Numerical Heat Transfer, vol.10, pp.571-581.
  • [19] Yen Y.C. and Tien C. (1963): Laminar heat transfer over a melting plate, the modified Leveque problem. J. Geophys. Res., vol.68, pp.3673-3678.
  • [20] Hayat T., Iqbal Z., Mustafa M. and Hendi A.A. (2013): Melting heat transfer in the stagnation-point flow of third grade fluid past a stretching sheet with viscous dissipation. Thermal Science, vol.17, No.3, pp.865-875.
  • [21] Gorla R.S.R., Chamkha A.J. and Meshaiei E.A. (2012): Melting heat transfer in a nanofluid boundary layer on a stretching circular cylinder. J. Naval Architecture Marine Engg., vol.9, pp.1-10.
  • [22] Makinde O.D., Kumar K.G., Manjunatha S. and Gireesha B.J. (2017): Effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching surface with fluid particles suspension. Defect and Diffusion Forum, vol.378, pp.125-136.
  • [23] Kumar K.G., Gireesha B.J., Gorla R.S.R. and Rudraswamy N.G. (2017): Melting heat transfer of hyperbolic tangent fluid over a stretching sheet with fluid particle suspension and thermal radiation. Communications In Numerical Analysis, vol.2017, No.2, pp.125-140.
  • [24] Mustafa M., Hayat T. and Alsaedi A. (2013): Unsteady boundary layer flow of nanofluid past an impulsively stretching sheet. J. Mechanics, vol.29, No.3, pp.423-432.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c4156bb-f485-4e1d-9c54-bbdfa4f848d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.