Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Superconducting magnetic separator technology exploits the power of intense magnetic fields to discriminate between magnetic and non-magnetic materials, proving indispensable across various sectors including mining, recycling, and water treatment. This study seeks to elucidate the influence of different magnetic gathering media on the magnetic field distribution within superconducting magnetic separators through comprehensive modeling and simulation. Employing Infolytica MagNet software, we simulated the magnetic field distribution in a JS-6-102 pilot-scale superconducting magnetic separator, assessing conditions both without magnetic media and with diverse magnetic matrices, including mesh and rod types. Our simulations reveal that the inclusion of magnetic matrices markedly modifies the magnetic field distribution, leading to enhanced magnetic induction intensity and variations in field uniformity. Specifically, we found that smaller mesh sizes produce a more homogeneous magnetic field, whereas larger rod diameters induce greater magnetic field distortion. These insights are pivotal for optimizing the design and operational efficiency of superconducting magnetic separation systems.
Rocznik
Tom
Strony
art. no. 193566
Opis fizyczny
Bibliogr. 24 poz., fot., rys., wykr.
Twórcy
autor
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
- China National Uranium Company Limited, Beijing 100013, China
autor
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Bibliografia
- AHORANTA, M., Lehtonen, J., MIKKONEN, R., 2003. Magnet design for superconducting open gradient magnetic separator. Physica C Supercond., 386, pp.398-402.
- CAO, S., WEI, D., LI, J., 2019. Effect of Magnetic Field in Magnetic Separation Column on Particle Separation Process Based on Numerical Simulation. J. Eng. Sci. Technol. Rev, 12(2).
- FUCHINO, S., FURUSE, M., AGATSUMA, K., KAMIOKA, Y., IITSUKA, T., NAKAMURA, S., UEDA, H., KAJIKAWA, K., 2013. Development of superconducting high gradient magnetic separation system for medical protein separation. IEEE T Appl. Supercon., 24(3), pp.1-4.
- GILLET, G., DIOT, F., 1999. Technology of superconducting magnetic separation in mineral and environmental processing. Mining Metal Explor., 16(3), pp.1-7.
- HU, Z., ZHANG, J., LIU, J., TANG, Y., ZHENG, X., 2020. Model of particle accumulation on matrices in transverse field pulsating high gradient magnetic separator. Miner. Eng., 146, p.106105.
- IANNICELLI, J., PECHIN, J., UEYAMA, M., OHKURA, K., HAYASHI, K., SATO, K., LAUDER, A., REY, C., 1997. Magnetic separation of kaolin clay using a high temperature superconducting magnet system. IEEE T Appl. Supercon., 7(2), pp.1061-1064.
- IRANMANESH, M., HULLIGER, J., 2017. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry. Chem. Soc. Rev, 46(19), pp.5925-5934.
- LI, W., ZHOU, L., HAN, Y., XU, R., 2019. Numerical simulation and experimental verification for magnetic field analysis of thread magnetic matrix in high gradient magnetic separation. Powder Technol., 355, pp.300-308.
- LIU, W., ZHENG, C., WU, C., 2022. Infiltration and resuspension of dilute particle suspensions in micro cavity flow. Powder Technol., 395,400-411.
- LUO, L., Nguyen, A., 2017. A review of principles and applications of magnetic flocculation to separate ultrafine magnetic particles. Sep. Purif. Technol, 172, 85-99.
- MANIOTIS, N., KALAITZIDOU, K., ASIMOULAS, E., SIMEONIDIS, K., 2023. A rotary magnetic separator integrating nanoparticle-assisted water purification: Simulation and laboratory validation. J. Water Process., 53, p.103825.
- NAKAI, Y., MISHIMA, F., AKIYAMA, Y. and NISHIJIMA, S., 2010. Development of high gradient magnetic separation system under dry condition. Physica C Supercond, 470(20), pp.1812-1817.
- OHARA, T., KUMAKURA, H., WADA, H., 2001. Magnetic separation using superconducting magnets. Physica C Supercond, 357, pp.1272-1280.
- SHARMA, R.G., 2021. Superconductivity: Basics and applications to magnets (Vol. 214). Springer Nature.
- SUPREETH, D.K., BEKINAL, S.I., CHANDRANNA, S.R., DODDAMANI, M., 2022. A review of superconducting magnetic bearings and their application. IEEE T. Appl. Supercon., 32(3), pp.1-15.
- WANG, F., TANG, D., GAO, L., DAI, H., JIANG, P., LU, M., 2020. Dynamic capture and accumulation of multiple types of magnetic particles based on fully coupled multiphysics model in multiwire matrix for high-gradient magnetic separation. Adv. Powder Technol., 31(3), pp.1040-1050.
- WATSON, J.H., BEHARRELL, P.A., 2022. Magnetic separation. In Handbook of Superconductivity (pp. 572-582). CRC Press.
- WATSON, J. H. P.,1994. Status of superconducting magnetic separation in the minerals industry. Miner. Eng., 7.5-6: 737-746.
- XUE, Z., WANG, Y., ZHENG, X., LU, D., LI, X., 2020. Particle capture of special cross-section matrices in axial high gradient magnetic separation: A 3D simulation. Sep. Purif. Technol., 237, p.116375.
- XU, Z., BO, X., WU, H., TANG, Z., CHEN, F., CHEN, K., WANG, X., ZHANG, G., JIANG, S., 2021. Numerical simulation of contact and separation of magnetic particles under uniform magnetic field. J Phys. D. Appl. Phys., 55(8), p.085001.
- XUE, Z., WANG, Y., ZHENG, X., LU, D., SUN, Z., JING, Z., 2022. Mechanical entrainment study by separately collecting particle deposit on matrix in high gradient magnetic separation. Miner. Eng., 178, p.107435.
- YAMATO, M., KIMURA, T., 2020. Magnetic processing of diamagnetic materials. Polymers, 12(7), p.1491.
- ZHENG, X., GUO, N., CUI, R., LU, D., LI, X., Li, M., WANG, Y., 2022. Magnetic field simulation and experimental tests of special cross-sectional shape matrices for high gradient magnetic separation. IEEE T. Magn., 53(3), pp.1-10.
- ZHOU, L., LI, W., HAN, Y., LI, Y., LIU, D., 2021. Numerical simulation for magnetic field analysis and magnetic adsorption behavior of ellipse magnetic matrices in HGMS: Prediction magnetic adsorption behavior via numerical simulation. Miner. Eng., 167, p.106876.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c34cc3a-e575-4762-b447-52c71c1c20a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.